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ABSTRACT

Exploring nanoscale material properties through light-matter interactions is essential to unveil new phenomena and manipulate materials at
the atomic level, paving the way for ground-breaking advancements in nanotechnology and materials science. Various elementary excitations
and low-energy modes of materials reside in the terahertz (THz) range of the electromagnetic spectrum (0:1–10 THz) and occur over various
spatial and temporal scales. However, due to the diffraction limit, a slew of THz studies are restricted to drawing conclusions from the spa-
tially varying THz responses around half of the probing wavelengths, i.e., from tens to a couple of hundred micrometers. To address this fun-
damental challenge, scanning near-field optical microscopy (SNOM), notably scattering-type SNOM (s-SNOM), combined with THz sources
has been employed and is fueling growing interest in this technique across multiple disciplines. This review (1) provides an overview of the
system developments of SNOM, (2) evaluates current approaches to understand and quantify light-matter interactions, (3) explores advances
in THz SNOM applications, especially studies with THz nano-scale spatial responses employing an s-SNOM, and (4) envisions future chal-
lenges and potential development avenues for the practical use of THz s-SNOM.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0189061
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I. INTRODUCTION

The physical and chemical characteristics of a material are mainly
governed by its structure.1,2 In this context, the scale at which various
phenomena are being probed is of crucial importance since different
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levels of assembly are known to have critical repercussions on the mac-
roscopic characteristics.3,4 Hence, examining materials at the nanoscale
becomes critical to unveil the relationship between micro- and macro-
scopic material responses.5,6 One of the promising approaches to
unravel such relationships is to probe the materials via light-matter
interactions at the nanoscale.

Scanning near-field optical microscope (SNOM) is one of the
tools used to decipher material properties from the optical responses
obtained—beyond the Abbe diffraction limit—over a broad range of
wavelengths.7–16 Since terahertz (THz) photons have energy in the
millielectronvolt (meV) range, they interact with energy transitions
ranging from zero to tens of meV in condensed matter systems.17,18

Therefore, THz waves allow us to induce and probe various low-
energy modes and collective excitations19,20 such as charge-carrier
scattering, lattice vibrations,21–24 polaritons,25,26 molecular vibrations,
and inter-molecular non-covalent interactions in molecules.27–33

In terms of resolving sub-wavelength features, scattering-type
SNOM (s-SNOM) has been demonstrated to achieve nanoscale spatial
resolution for long-wavelength radiation, including THz waves.10–15

Therefore, THz s-SNOM allows the interrogation of optical properties
at the nanoscale, which is typically impossible by employing conven-
tional far-field techniques.34,35 In this article, the fundamental princi-
ples of SNOM are briefly reviewed along with recent advances in THz
s-SNOM. This review summarizes the seminal works by the THz s-
SNOM community and highlights the multi-pronged utility of such a
cutting-edge technique in practical use for material characterization.

Structurally, the review comprises of six sections. It begins with a
summary of SNOM system developments in Sec. II and then moves
the main focus to the studies that are employing scattering-type SNOM
(s-SNOM) in the THz regime. In Sec. III, the basic theory underpin-
ning near-field interactions in s-SNOM and the fundamental method-
ologies to unravel material properties from near-field scattering signals
are discussed. In Sec. IV, motivated by abundant responses collected
from various materials upon THz excitation, seminal works employing
THz s-SNOM for material characterization including solid-state bulk
samples, two-dimensional materials, and biological samples are
reviewed. In Sec. V, the perspective on several intriguing directions
regarding THz s-SNOM applications, including near-field investiga-
tions of soft or weak-scattering materials, nanotomography of multi-
layer structures, near-field interrogations in liquid environments,
cryogenic probing of quantummaterials, and other emerging topics are
provided. Finally, in Sec. VI a summary and conclusions are provided.

II. PRINCIPLES OF OPERATION

Conventional optical interrogation approaches aimed at materials
characterization are based on the far-field detection scheme. From a
transmitter to detector, the electromagnetic waves with high spatial
frequencies (larger than the free-space wavenumber) of electromag-
netic waves contribute negligibly to the finally detected signals. This is
because a far-field propagation process acts as a low-pass filter in
Fourier space. Lacking of such high-spatial-frequency components of a
field (also known as evanescent fields), the desirable spatial resolution
encompassed by these detection schemes is therefore bounded roughly
by half of the incident wavelength, which is known as the diffraction
limit.36,37 Hence, optical interrogation approaches based on conven-
tional far-field schemes preclude the observation of deep sub-
wavelength features. It is essential to collect the high-frequency
components of the electromagnetic waves to break such a spatial

resolution limit.38 For further math details, readers may refer to a
recent monograph chapter by Bachelot and Douillard.39

A. System development

1. SNOM configurations

There are quite a few experimental configurations for probing
high-frequency evanescent fields based on scanning probe microscopy
methods. In this section, we start with reviewing the SNOM system
development and then delve into its recent advancements (i.e., aper-
ture and scattering-type) for near-field terahertz detection at the
nanoscale.

The SNOM is capable of exciting and of collecting evanescent
fields and is one of the most promising tools allowing subwavelength
sample characterization, beyond the diffraction limit. There are two
mainstream types of SNOM configurations, depending on whether the
light passes through an aperture of the probe tip or not: (1) aperture-
type SNOM (a-SNOM) and (2) scattering-type SNOM (s-
SNOM).15,40,41

We would also like to highlight that scanning microwave micros-
copy (SMM) is another seminal scanning probe-based technique for
investigating nanoscale microwave responses (in the gigahertz or sub-
terahertz range), sharing synergistic insights with SNOM in system
development.42,43

Regardless of the configuration type, three critical elements are
required to surpass the diffraction limit using SNOM, namely,

(1) having a concentrated localized field acting as a point source to
probe (illuminate) the sample,

(2) maintaining the probe-sample distance within at least a single
incident wavelength,

(3) being able to raster scan the sample, and
(4) having an optical detection of sample response.

Satisfaction of above four requirements enables to probe the
high-spatial-frequency electromagnetic waves, which do not propagate
to the far-field.

The most intuitive realization, which would simultaneously sat-
isfy three of the aforementioned requirements, would be an extension
from the conventional-type confocal microscope. Such an idea was ini-
tially proposed by Synge in 1928, and was published under the encour-
agement of Albert Einstein. Figure 1(a) is a depiction of this theoretical
design. Synge envisioned44 that by placing a photo-electric cell in the
proximity of an opaque film with a tiny rectangular aperture (the
radius roughly equals the incident wavelength), one would be able to
resolve sub-wavelength features of the sample by collecting the evanes-
cent fields. Such a system would allow these features to be displayed on
a screen synchronized with the raster scanning movement of the aper-
ture. In 1972, Ash and Nicholls45 demonstrated the first implementa-
tion of such an aperture-type near-field detection scheme, resolving
k=60 features on a grating in microwave frequency as shown in
Fig. 1(b).

To demonstrate the nano-scale spatial resolution, Pohl et al.46

employed this aperture-type detection scheme onto a visible laser
source (488 nm) and, for the first time, applied a piezoelectric
feedback-loop control for the tip-sample distance regulation. Note
that, the demand of a precise probe-sample distance control limited
the rapid progress of SNOM development until the advent of scanning
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probe microscopy (SPM),47–49 and its core element: a piezoelectric
feedback-loop control, as used in Pohl et al.’s work. This system con-
figuration triggered the acceleration of SNOM embodiment in the
1980s.

Figure 2 is a temporal evolution map of all SNOM works extend-
ing the boundary of spatial resolution limits starting with 1972 until.
An observable upward trend of the spatial resolution began in 1983, as
shown in Fig. 2, and it has progressed annually in a wide range of

FIG. 1. The configuration development track for aperture-type (a)–(c) and scattering-type (d)–(f) THz SNOM: (a) the first theoretical design of SNOM; (b) a typical transmission-
type SNOM design for THz detection in early years; (c) modern-type THz aperture SNOM: combining the antenna and probe as a single item; (d): a typical scattering-type
SNOM design with different THz sources with a standalone detector; (e) cutting-edge THz s-SNOM design in a detector-less and fast-response scheme; and (f) optical-pump-
terahertz-probe s-SNOM for probing ultra-fast dynamics.

FIG. 2. SNOM spatial resolution competi-
tion since 1972 over a broadband spectral
range, including visible (purple), infrared
(green), terahertz (red: scattering-SNOM,
blue: aperture-SNOM), microwave (cyan)
and radio-wave (yellow) frequencies.
Examples of possible test samples are
placed around typical spatial dimensions
with potential radiations of the interest.
References about THz SNOM spectral
bandwidth progression are labeled in
Fig. 3.
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frequency bands from visible to THz regimes. More noticeably, while
a-SNOM demonstrated the sub-wavelength resolution in visi-
ble,46,50,51 infrared,52 THz,53–60 microwave,45 and radiowave54

regimes, its spatial resolution is still limited at the microscale for
long-wavelength electromagnetic waves, especially for THz radia-
tion61–63 (blue clusters in Fig. 2). This is due to the fact that an a-
SNOM relies on a tapered aperture to collect the near-field signals
through a tiny hole. Since the light transmission efficiency (r)
decays heavily with a small aperture radius (a) relative to wavelength
(k) as r / ða6=k4Þ, a trade-off between the aperture size and the
transmission efficiency needs to be achieved.13,64

Since the first THz a-SNOM work53 and the pioneering dem-
onstrations of the first THz near-field knife test and white-light
imaging,54,55 many efforts have been made for the advancement of
THz a-SNOM (see Table I). One approach is to engineer the probe
or the aperture coating materials as well as geometry and to utilize
surface plasmon polaritons or hyperbolic media to enhance the
transmission efficiency.56–59,87 Another frequently encountered
approach is to integrate the THz nano-detector (an optical detector)
into the aperture probe as a single item.61

However, recent studies of THz a-SNOM (blue crosses in Fig. 2)
show that its spatial resolution still fails to achieve hundreds of nano-
meters.62,63,73,88 One recent study incorporated a quantum cascade
laser (QCL) as a laser feedback interferometry (LFI) with a THz nano-
detector, as shown in Fig. 1(c), achieving 17lm spatial resolution at

3:4 THz.73 Such a micrometer-scale resolution ability hampers explor-
ing interesting phenomena from the physical, chemical, and biological
perspectives at the sub-cellular level.

Therefore, another type of SNOM capable of revealing nano-
scale features is needed. Unlike a-SNOM, s-SNOM focuses and collects
the scattering signals from the probe apex and thus avoids the wave-
guide cutoff effect happening in fiber/aperture transmission.65 Wessel
was the first to theoretically envision a metallic sharp probe that would
confine and enhance the electromagnetic field.89 Wickramasinghe and
Williams realized such a theoretical proposition with a signal detection
scheme for a scattering-type configuration and patented it.90 In this
signal detection scheme, a carrier wave has a probe oscillation fre-
quency that modulates the near-field scattering signals. Thus, the back-
ground noise is expected to be suppressed after demodulating the
signals with multiple harmonics of carrier wave frequency. A further
brief summary of these signal detection principles is shown in Sec.
IIA 2. More systematic studies on s-SNOM followed after
Wickramasinghe et al., kept pushing the s-SNOM capability limit as
demonstrated by performing typical resolution tests, including the
knife-edge test and contrast imaging. Developments in s-SNOM sys-
tems with nano-scale resolutions were reported in broad electromag-
netic spectra among visible,10,65–68 infrared,69–72,91,92 THz,74,76–78,80–
82,93–103 and microwave83,86,88,104,105 regimes. Note that the pioneer
work in 1996 by Keilmann et al.86 did demonstrate that s-SNOM
would work in all infrared regions in principle. Figure 1(d) shows a

TABLE I. Selected pioneer SNOM works in the spatial resolution competition.

Aperture SNOM (sorted by year) Scattering or apertureless SNOM (sorted by year)

Frequency Spatial resolution References Spatial resolution References

Visible
k=60 ð488 nmÞ Pohl et al.46

�500 nm (670 nm) Inouye et al.65

35–100 nm (670 nm) Bachelot et al.66,67

1–3 nm (633 nm) Zenhausern et al.10,68k=50 ð630 nmÞ Betzig et al.51

Infrared k=4 (4lm) Piednoir et al.52
100 nm (9.2–10.7 lm) Knoll et al.69,70

20 nm (9–12 lm) Amarie et al.71

100 nm (7.6–13.3 lm) Huth et al.72

Terahertz

k=2 ð359 lm) Keilmann54
150 nm (2THz) Chen et al.74

40 nm (2.54 THz) Huber et al.75

300 nm (0.2–3.2 THz) von Ribbeck et al.76Hunsche et al.55

50 nm (1.3–8.5 THz) Kuschewski et al.77Mitrofanov et al.56–59

1 lm (2.53 THz) Dean et al.78

200 nm (0.11–0.175 THz) Chen et al.79

125 nm (3.44 THz) Rubino et al.80

Walther et al.61

k=4 (0.6–2.3 THz)

Sawallich et al.62

35 nm (2.7 THz) Pogna et al.81

120 nm (3.28 THz) Reichel et al.82

Siday et al.63

7–60 lm (0.2–2.5 THz)
10 lm (0.05–1.5 THz)
30 lm (0–2 THz)

Giordano et al.73
3.9 lm (0.2–1.5 THz)
17 lm (3.4 THz)

Microwave 0.5mm (10GHz, 3 cm) Ash et al.45
200 nm (217mm) Knoll et al.83

�1 lm (3mm) Dai et al.84

� 0:1 nm (2.5 GHz, 12 cm) Lee et al.85

Radiowave
k=40 000, 100 lm (4m) Keilmann54 � � � � � �
k=200 000, 10 lm (20m) Keilmann et al.86 � � � � � �
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typical s-SNOM configuration. It contains four main components: (1)
a vibrating metallic probe tip driven by a piezo, (2) a pilot laser with a
quadrant photodetector to maintain the closed-feedback-loop regula-
tion of the probe tip oscillation, (3) a high-precision sample translation
stage in transverse and vertical directions, and (4) a radiation source
and detector for optical investigations. Nowadays, it is typical to
assemble an atomic force microscope (AFM) with an optical detection
system as an s-SNOM.

Figure 2 summarizes published seminal s-SNOM system
and instrumentation development studies with corresponding
spatial resolutions and bandwidths over the past 50 years since
1972.10,45,46,50–52,54–59,61,62,65–74,76–84,86,88,92–111 Overall, the spatial reso-
lution and available spectral bandwidth of s-SNOM increased over
time in a broad spectral range, from visible to microwave regimes. At
the start of the period (1970s–1990s), most efforts to increase the spa-
tial resolution capability were made for visible wavelengths (purple
crosses), especially for monochromatic radiation sources.10,66–68 Since
late 1990s, such consistent efforts to push the boundary of the spatial
resolution limit started to translate into infrared69–72,106 (green crosses)
and THz74,76–78,80–82,95–103 (red crosses) regimes. Enabling the broad-
band spectral range for s-SNOM was until recently the most challeng-
ing part of this research effort.

The THz s-SNOM development tracking of spatial resolution
began around 150 nm, in the early 2000s,74 and then kept pushing the
boundaries until reaching a plateau at about 50 nm77,100,103 and even
better (about 20 nm) for time-resolved measurements.98,101,102 On the
other hand, the spectral range of THz s-SNOM started to broaden
within 0:5� 3 THz in late 1990s.55 A typical broadband THz investi-
gation approach was THz time-domain spectroscopy (THz-TDS).76

Favored by the introduction of free-electron lasers (FEL) with tunable
radiation, the available THz near-field interrogation spectral range
extended up to 8:5 THz recently.77

To highlight the spatial resolution advantage for long wave-
lengths, selected pioneering and representative works of s-SNOM are
summarized in Table I and compared with a-SNOM. As Table I sug-
gests, there are two types of radiation sources typically incorporated
with THz s-SNOM. Depending on the purpose and funding budgets,
it is common to incorporate either powerful continuous-wave laser
sources74,78,81,82,103 or broadband pulse systems76,77 into an s-SNOM.

In THz regimes, providing a reliable and affordable radiation
source and detector is still considered a challenge.112,113 THz QCL, for
example, is one of the promising sources with high-power radiation
and potentially, a room-temperature operating environment.114–116

One of the detector-less and cryogen-free schemes based on THz QCL
is called laser feedback interferometry (LFI), in which electromagnetic
radiation from the laser is re-injected into the laser cavity after inter-
acting with external targets.114 It is a compact technique combining
the transmitter and receiver as a single device and allowing coherent
detection by analyzing the perturbing intra-cavity electric field. Figure
1(e) displays a typical LFI setup using a THz QCL.78 Such a cutting-
edge THz detection scheme has been reported with sub-50nm spatial
resolutions within 2:5� 4 THz, and has been used to reveal detection
dynamics in semiconductor nanowire detectors.81,82,103

Another configuration extension is to combine a pump source with
THz s-SNOM to probe dynamics in materials.98,101,102,117,118 To reveal
spatial-temporal ultrafast dynamics in time domain usually relies on a visi-
ble or near-infrared beam and/or a THz beam to pump the material

concurrently with the incident THz beam as shown in Fig. 1(f). The charge
carriers inside the sample would thus generate and accelerate upon the
femtosecond illumination. Such a technique is referred to as pump-probe
near-field optical spectroscopy. Its scattering fields contain the modulated
THz field from pumping, which encodes the sample’s ultrafast dynamics.
If the incident field has THz components, such a THz near-field scattering
configuration is referred to as near-field optical pump THz probe (n-
OPTP)101 in the literature. Otherwise, it is referred to as near-field optical
pump THz emission (n-OPTE)101 or laser THz emission nanoscopy
(LTEN)98,102 according to different literature nomenclatures. Recently, Cai
et al. employed such n-OPTE idea to study THz spin current pulses by
pumping a type of nonmagnet/ferromagnet heterostructures (in this study,
cobalt-iron-boron alloy, a ferromagnetic layer, is sandwiched by tungsten
and platinum, two nonmagnetic layers) at the nanoscale.119 Generally,
THz nanoscopy with near-field pumping schemes should be able to study
arbitrary heterostructures with potential applications in characterizing
spintronic optoelectronic nanodevices in the future.

In summary for THz spatial resolution studies: SNOM serves as a
promising tool to provide sub-wavelength THz signatures beyond the
diffraction limit. THz s-SNOM is capable of unraveling spatially vary-
ing features at the nanoscale level (50 nm) while a-SNOM is more suit-
able for capturing THz responses at the microscale.

Figure 3 illustrates the annual progression of THz SNOM
system developments vs frequency/wavelength for broadband and

FIG. 3. THz SNOM developments since the first demonstration (1995) with typical
THz sources covering 0–10 THz bandwidth for aperture SNOM (blue) and scattering
SNOM (red). The typical bandwidth of each source is illustrated. Horizontal lines
indicate the probing bandwidth for each reference. Subfigures are reproduced with
permission from Liewald et al., Optica 5, 159–163 (2018). Copyright 2018
Optica.100 Reproduced with permission from Khatib et al., ACS Photonics 5, 2773–
2779 (2018). Copyright 2018 American Chemical Society.111 Reproduced with per-
mission from Raki�c et al., Appl. Phys. Rev. 6, 021320 (2019). Copyright 2019 AIP
Publishing LLC.114
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single-wavelength radiation sources from 1995 to 2022. We also indi-
cate the relative cost of different types of sources on a $ to $$$$ and
their representative output powers. Depending on the generation
mechanism, preferable THz spectral range, and funding budgets, there
are five typical options of THz radiation sources to be incorporated
into an s-SNOM: (1) electronic mixer,100 (2) THz-TDS,55,63,76,107 (3)
QCL,78,82,103,120 (4) gas laser,75 and (5) free-electron laser and
synchrotron.77,111

Overall, both a-SNOM and s-SNOM have been developed to
operate in broadband THz regimes. For example, in the spectral ranges
below 3THz, both a-SNOM and s-SNOM have been demonstrated in
near-field THz studies with THz-TDS,55,76,95,96,107,121 which is a typi-
cal, commercially mature and available broadband option (0� 6 THz)
at an affordable financial budget for most THz laboratories. A few
cases have used electronic mixers and gas lasers. Electronic mixers
transmit THz waves based on high-harmonic generation of GHz
waves and are usually preferred to provide monochromatic THz radia-
tions at sub-1 THz, e.g., 0:5 THz or lower.100 Alternatively, gas laser is
another commercially accessible option with a promising budget.75 In
terms of monochromatic THz radiation, a noticeable option for
SNOM, especially s-SNOM, are quantum cascade lasers (QCLs). Over
the past 20 years, consistent efforts in the community have been made
to improve the spatial resolution and scattering intensity of THz s-
SNOM. As summarized in Fig. 3, s-SNOM has opened up THz
responses between 2 and 4THz at nanoscale, either with a standalone
bolometer73,74,93,94 or using the laser cavity itself as a detector-less
scheme.78,80,82,99,103

The QCL is a unipolar device and exploits a cascaded series of
intersubband transitions for laser emission. It is able to provide high-
power THz radiation (up to 1W) and can operate in a cryogen-free
scheme,114,115,122 with improved designs and modes of operation
opening the potential for wide bandwidth tunable operation above
1.5THz.123–126

New advancements in frequency combs (FC) for THz QCL are
expected to assist THz s-SNOM with both the advantages of being
high-power broadband simultaneously.127,128 Pistore et al. reported
the first demonstration of combining the THz QCL frequency comb
with an s-SNOM.109 This QCL-FC-assisted scheme extended the fre-
quency range of THz s-SNOM from 0.4–1.6THz (THz-TDS system)
to 2.5–3.5THz (Pistore et al., THz QCL frequency comb). Note that,
at frequencies except the central frequency of the THz QCL FC, the
amplitude of s-SNOM scattering signals collected from a Au mirror is
around 25% to that of its counterpart with a THz-TDS system (panel g
of Fig. 3 in Pistore et al.109) Further studies, for example improving sig-
nal-to-noise ratio, of phase-locked THz QCL FC are essential to enable
QCL-FC-assisted THz s-SNOM to be experimentally useful for mate-
rial characterization,126,129 like the retrieval of complex dielectric prop-
erties of interrogated samples,130–132 leveraging short pulses generated
by THz QCL126,133,134 and coherent sensing capability of LFI
scheme114,135–139 for THz s-SNOM in future investigations.

Another noticeable broadband THz radiation source for s-
SNOM are the free-electron laser (FEL) or synchrotron. FEL employs
relativistic electrons as a gain medium and thus is able to generate
ultrashort pulses. The s-SNOM equipped with such a high-power
broadband source was demonstrated in the spectral range of up to
10THz and beyond, including the mid-infrared range.77,111 Recently,
Wehmeier and co-workers (a team led by Mengkun Liu and G.

Lawrence Carr) in Brookhaven National Laboratory (National
Synchrotron Light Source II, Upton, USA) have demonstrated to fill
an under-explored bandwidth gap at a cryogenic temperature
(>5THz with detector cooled at 4.2K) for synchrotron-based THz
nanospectroscopy measurements by using a liquid-Helium-cooled
Hg1�xCdxTe (x � 0:173, MCT) detector,140 allowing investigations
of phonon modes and other various collective features in solid-phase
materials in THz regimes in the future. Note that the detection thresh-
old of MCT detector for THz nanospectroscopy is hugely impacted by
MCT cooling temperature (5.2 THz at 4.2K and shifts to 12THz at
77K), because the detector material band edge shifts to lower energies
with decreasing temperature.

Apart from developing systems, another ongoing task for s-
SNOM community is to improve the signal-to-noise ratio of near-field
signals. This leads to the discussion of principles about near-field signal
retrieval and studies about near-field signal enhancement.

We also would like to mention that, in the context of SMM, the
configuration of apertureless SMM is different from scattering-type
configurations we discussed in Fig. 1. In apertureless SMM, the probe
itself is typically the antenna with microwave (subterahertz) radiation
and detection from a vector network analyzer (VNA),141 without an
external radiator to create scattering from the AFM tip.

More recently, in SMM development, Farina and Hwang led the
invention of an interesting configuration called inverted SMM (i-
SMM),105,142–144 where a microwave signal is injected through a sam-
ple holder (also as a microwave waveguide) and thus through the inter-
rogated sample rather than through the conductive probe tip. Note
that in i-SMM configuration, the sample is held by a transmission line
with a broadband impedance matching range, thus allowing both
transmission and reflection signals to be measured. We envisage such
an inverted near-field detection scheme can be incorporated for high-
speed nanoscale THz coherent measurements, if the synchronization
between the probe tip dithering and THz raster scanning in the
emitter-detector pair can be achieved, including for laser feedback
interferometry (THz nano-LFI) detection (in the context of LFI, the
laser itself acts as both the emitter and detector simulta-
neously)114,135,138 in tandem with a properly designed sample holder.
By exploiting LFI, the swept-frequency delayed self-homodyning
method145 allows to operate THz QCL in either continuous-wave146 or
pulsed modes,137 without requiring an external mechanical modula-
tion scheme (e.g., modulated by a laser drive current rather than an
optical chopper)136,137 for lock-in detection, which greatly reduces the
sampling time per pixel and is practically important for realizing high-
speed near-field nanoimaging and nanospectroscopy measurements
for material analysis employing THz nanoscopy with table-top sources
in a compact and experimentally simple scheme.

2. Signal retrieval

One of the important roles of SNOM is to translate the informa-
tion about the near-field probe-sample coupling into the far-field. For
s-SNOM, this is realized by modulating the near-field electromagnetic
components onto a carrier wave scattered from the probe. The probe
tip acts as an antenna whose scattering depends on both the illuminat-
ing field and the near-field interaction between the tip and sample.
The illuminating field is formed by propagating waves (directly inci-
dent upon the tip and those reflected from the sample surface), consti-
tuting background with slow spatial variation on the wavelength scale.
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In contrast, the near-field is composed of evanescent waves that decay
exponentially at the nanometer scale, and thus induce rapid spatial
variation of the tip-scattered light. To separate the near-field from the
background, the tip-sample distance is modulated by tip dithering at a
frequency X, which typically corresponds to the cantilever’s mechani-
cal resonance frequency. For small dithering amplitudes, (typically a
few tens of nanometers), the slowly varying background is nearly linear
with tip-sample distance and mostly contributes to the low order har-
monics (�2X) of the tip-scattered signals. The fast-varying near-field
interaction is highly nonlinear with distance and thus contributes to
higher-order harmonics (�2X). Thus, the background could be signif-
icantly suppressed by demodulating the detector signal at higher har-
monics of the tip dithering frequency using, e.g., a lock-in amplifier.90

Unfortunately, the high-harmonic demodulation on its own does not
provide complete background suppression. Because the far-field detec-
tor always measures scattered power, Idet ¼ jEnf þ Ebgj2 rather than
the field, for coherent near-field scattering, Enf , and background, Ebg,
the detected signal will always contain products of Enf and Ebg. This
leads to a, so-called, multiplicative background that could obscure
near-field signal. For monochromatic radiation sources, Oceli�c et al.
demonstrated a pseudoheterodyne interferometric detection technique
to retrieve background-free near-field responses in s-SNOM.147 Before
the invention of proper interferometric detection techniques such as
pseudoheterodyne (PsHet),147 multiplicative background constituted a
leading cause of s-SNOM imaging artifacts. Note that, synthetic optical
holography based on the interference between s-SNOM tip-scattered
field and a synthetic reference wave is also suitable for s-SNOM mea-
surements with monochromatic radiations.148

To allow for a complete description of material properties, one
needs to have access to both amplitude and phase of the tip-scattered
light. To do so, an interferometric detection is utilized. Such techniques
usually direct a portion of the incident light to the reference arm of a
Michelson interferometer, allowing for an interference between a refer-
ence beam and the tip-scattered light at the optical detector.147,149–152

Reference beam further provides a strong boost of the weak near-field
signal, significantly enhancing s-SNOM sensitivity. For monochro-
matic radiation sources, Oceli�c et al. introduced a PsHet interferomet-
ric detection technique, which completely suppresses all s-SNOM
backgrounds.147 It adds the reference beam phase modulation to the
classic high-harmonic demodulation scheme, suppressing the multipli-
cative background and enabling simultaneous measurement of the
scattered field amplitude and phase, even in the case whereas homo-
dyne s-SNOM detection schemes fail to do so.151 Recently, Sternbach
et al. reported the applicability of pseudoheterodyne detection method
with pulsed laser sources; they employed this transient detection
approach to time-resolved measurements on photo-induced effects in
the insulator-to-metal transition of vanadium dioxide at the nano-
scale.153 The compatibility of s-SNOM detection with low-repetition
rate pulsed laser systems (which have high-peak power) faces a con-
straint with lock-in detection, which requires the sampling rate at least
twice that of the highest frequency component to accurately recon-
struct a signal due to the Nyquist–Shannon sampling theorem.154 For
typical PtIr-coated AFM tips (Rocky Mountain Nanotechnology) of
�75 kHz oscillation frequency, the repetition rate of the pulsed laser
has to be at least 300kHz for the second-harmonic demodulation. For
higher-order harmonic signals, e.g., the 4th harmonic demodulation
with a lock-in amplifier requires the pulse repetition rate to be at least

eight times of the tip oscillation frequency for proper sampling. In
addition to pseudoheterodyne detection, to further circumvent the lim-
itation of standard lock-in detection with low repetition rate kHz-class
pulsed lasers, Palato et al. recently demonstrated a quad demodulation
detection method to retrieve higher-order (n> 4, up to n¼ 7) near-
field signals with a 200 kHz laser amplifier with the tip oscillation
frequency as 325 kHz by exploiting the stroboscopic effect.155 These
innovative detection schemes will be beneficial for observing spatio-
temporal dynamics utilizing ultrafast s-SNOM in the future.

The Michelson-type interferometric approach also serves as a
core part for s-SNOM measurements with broadband sources, as per-
formed with nano-Fourier transform infrared spectroscopy (nano-
FTIR). In nano-FTIR, the detector signal is recorded as the reference
mirror translating linearly (thus changing the phase of the reference
beam). The resulting interferogram is then Fourier transformed to
obtain the amplitude and phase spectra of the interrogated sample.
Similar to PsHet, nano-FTIR also provides complete suppression on s-
SNOM backgrounds complemented by a strong interferometric boost
of the weak near-field signals.71,72,92

For broadband THz s-SNOM measurements, usually performed
with THz-TDS, the forward elastically scattering field is detected
whereas no interference happens between the incident and reference
beam.156,157 This is at first demonstrated by von Ribbeck et al.76 before
the demonstration of broadband infrared s-SNOM by Amarie et al.,71

which was much later named nano-FITR.72 As opposed to nano-FTIR,
a femtosecond pulse acts as a gated beam in the THz photo-
conductive antenna to sample the scattering THz field at the receiver.
Therefore, the complex tip-scattered THz field is directly measured in
s-SNOM combined with THz-TDS systems.76,96 Note that since THz-
TDS systems directly measure THz field rather than power, they do
not suffer from the multiplicative background and could simply rely
on the high-harmonic demodulation for the background suppression.

However, due to the detection principle of time-domain-spectros-
copy, THz white-light nanoimaging obtained by s-SNOM with THz-
TDS system usually serves as a qualitative THz contrast scanner with
an averaged spectral amplitude but no meaningful phase information,
where s-SNOM tip scattered signal is collected when the time delay
between the gated pulse (the sub-ps beam, usually in near-infrared)
and the to-be-sampled THz field is fixed. Usually, meaningful phase-
resolved information from nano-THzTDS relies on THz hyperspectral
nanoimaging by taking THz nanospectroscopy at points of inter-
est,132,158 which usually is time-consuming. Recently, Jing et al. dem-
onstrated a data acquisition method to enable phase-resolved
information in THz white-light nanoimaging for nano-THzTDS.159

The key of this approach relies on an additional modulation of the
optical delay path between the gated pulse and the to-be-sampled THz
field at a modulation frequency (M) much smaller than the s-SNOM
tip resonant frequency (X). By combining the carrier-band (nX) and
sideband (nX6mM) information, the access to meaningful complex-
valued THz nanoimaging information is achieved. Refer to recent
studies, like Dai et al.160 and Larson et al.,161 for more technical details
of s-SNOM signal detection techniques.

3. Probe designs for scattering-type SNOM

In a scattering-type configuration, SNOM relies on the tip to con-
fine the electric field around the tip apex in order to overcome the dif-
fraction limit and re-radiate the incident field encoded with the sample
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information. Therefore, the design of probe tips is significant and has
the potential to improve the signal-to-noise ratio of scattering signals.

Recently, researchers in the s-SNOM field have attempted to
optimize the design of probe tips from different angles, including
the tip shank length and surface coating.162–168 As demonstrated
using classical antenna theory for s-SNOM spectra using
broadband (0:2� 1:2 THz) and single-frequency (3:11 THz;
k ¼ 96:5 lm) THz radiation sources, the preferred tip shank length
Ltip is associated with multiple times of the half-wavelength
(Ltip; n ¼ nk

2 , n is the resonance order), where the spectral varying
near-field tip enhancement is possibly to be tuned with the probe
length as shown in Fig. 4(a).165 However, the resonant tip length
does not scale linearly with the resonance order (n) but with a
shorter probe resonant length (Ltip; optimal; n <

nk
2 ), as shown in

Fig. 4(b), which is attributed to the presence of a cantilever.
Intriguingly, THz near-field coupling does not further shift the
probe resonance with the presence of a dielectric or metallic sam-
ple under the tip, a phenomenon observed for such devices at visi-
ble and infrared frequencies.162

A recent study reports the observation of deep-subwavelength
THz spatial features around 100 nm by employing a blunt tip whose
radius was substantially larger (750 nm) than the obtained resolu-
tion.164 This interesting result was observed at 2:5 THz ð119lmÞ by
increasing the radius of a PtIr tip (standard shank length: 20 lm) from
25 to 750 nm, as shown in Fig. 4(c), which breaks with the common
belief of s-SNOM users. It is explained by a strong “virtual tip sharpen-
ing” through utilization of very small tapping amplitudes compared to
the tip radius.

FIG. 4. Probe design for enhancing THz s-SNOM near-field couplings: (a) the tip-shank length dependence of near-field THz spectrum ranges due to antenna resonance effect,
which highlights the significance of realistic probe tip geometry shape on frequency-dependent near-field coupling enhancement (probe tip responsivity) in THz nanospectro-
scopy measurements. Reproduced with permission from Siday et al., ACS Photonics 7, 596–601 (2020). Copyright 2020 American Chemical Society.165 (b) THz near-field
enhancement dependence on antenna length in addition to the presence of cantilevers, which aligns with the understanding of half-wavelength antenna theory. Reproduced
with permission from Mastel et al., Nano Lett. 17, 6526–6533 (2017). Copyright 2017 American Chemical Society.162 (c) An experimental observation that 100 nm spatial resolu-
tion of THz near-field responses can counter-intuitively be maintained even with a probe tip radius at the micrometer-scale. Reproduced with permission from Maissen et al.,
ACS Photonics 6, 1279–1288 (2019). Copyright 2019 American Chemical Society.164 (d) A probe design proposal to enhance near-field scattering by customizing a chiral coat-
ing pattern on the probe surface to be experimentally demonstrated in the future. Reproduced with permission from Zhang et al., Phys. Rev. Appl. 15, 014048 (2021). Copyright
2021 American Physics Society.168
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In these s-SNOM probe works, full-wave simulations (COMSOL
Multiphysics, CST, etc.) play a significant role and are used to aid the
understanding of the experimental observations, e.g., reproducing the
spectral peaks observed in THz s-SNOM spectra, which does not origi-
nate from the sample permittivity but the antenna-resonance
effect.63,165,167

Another notable study suggested that a tunable spectral enhance-
ment could be achieved by tuning the metallic coating length or by
changing the coating pattern of a chiral helical structure on an achiral
silicon probe tip as illustrated in Fig. 4(d).168

In addition, a deliberate selection of coating materials to generate
surface polaritons at a specific probing wavelength may serve as
another potential option. For example, multiferroic materials may
introduce an enhanced tip-sample coupling in THz regimes and there-
fore act as a versatile s-SNOM tip coating option to probe local mate-
rial properties.169

While the dominant near-field response in the scattering sig-
nals of s-SNOM is attributed to p-polarized components, recent
studies showed that s-polarization responses from s-SNOM could
be detectable on specific materials169 and a special probe design
may facilitate the enhancement of s-polarization components.166

Rather than optimize the probe tip itself, Zhou et al. suggested that
a grating-slab-tip cascading structure may provide 15-fold near-
field enhancement around 0:5 THz.163 Despite these pioneering
works regarding the tip-scattered signal enhancement in the
SNOM field, there is still a lack of systematic and conclusive
knowledge to guide probe fabrication in a feasible way, especially
for THz waves. Significant efforts are required to investigate and
provide a refined recipe for reproducible probe tip fabrication and
controllable near-field enhancement. This probe tip fabrication
reproducibility is essential to broaden the utility of THz s-SNOM
for practical use in material characterization at the nanoscale for
multidisciplinary projects.

III. NEAR-FIELD INTERACTIONS
A. The three near-field effects

The major element of proper s-SNOM functionality is the metal-
lic sharp probe tip and there are three near-field effects that are essen-
tial for enhanced tip-sample coupling and elastic scattering.11,170

1. Lightning rod effect

When an electric field is focused onto the probe tip, the tip itself
becomes polarized and acts as a lightning rod, leading to a strong local-
ized field enhancement at its apex.171–176

2. Dipole effect

According to the method of images, scattering by a polarized tip
placed in the sample proximity is equivalent to the scattering of the tip
dipole and its mirror image dipole in the sample half-space, essentially
representing a dipole antenna. Since the image dipole depends on the
sample dielectric properties, the scattered radiation encodes this infor-
mation and allows for the possibility of recovering the local sample
permittivity.170,177–181

3. Antenna resonance effect

In s-SNOM spectroscopy, the probe tip acts as a nanoantenna
with spectral varying enhancements (alternatively, responsivity) for
tip-scattered signals. This probe tip response function is determined
primarily by its geometry as well as the coating materials and attached
cantilever, which dominates the access to available frequency compo-
nents of near-field signals. Due to a fixed tip shank length in s-SNOM
spectroscopic measurements (equivalently with varying wavelengths of
incident radiation), dipolar antenna theory could be adopted to explain
experimental near-field enhancements in the frequency domain, whose
bandwidth looks as “bandpass-filtered” and “selectively enhanced”
(actually due to the probe response function) when compared to its
far-field reflection component.164,165,167,182

B. Light-matter interactions: Calibration

There are two approaches to relate the permittivity with near-
field scattering spectra, as shown in Fig. 5(a). The first approach is to
fit the complex permittivity (dielectric response) to the experimental
near-field amplitude and phase data using an s-SNOM model. This
approach has been used frequently in studies aiming to correlate pho-
non or molecular resonances with measured near-field spectra, identify
localized plasmonic resonances, and recover free-carrier spatial and
spectral profiles by assuming knowledge of the sample properties a pri-
ori.75,100,158,169,184–186 In this review, we define it as solving a verifica-
tion problem. Another approach treats the complex permittivity in an
a posteriori manner and recovers this unknown material property
from the measured near-field complex-valued spectra.130,187–196 We
define this inverse process as solving a retrieval problem in this review.

Note that both the sample permittivity and the experimental
near-field spectra are complex-valued quantities. Therefore, the scat-
tering process involving an s-SNOM probe tip is a complex-complex
mapping as denoted in the center of Fig. 5(a).

The essence of multiple interactions between the probe and the
sample, before scattering to the far-field, has been well captured by
model approximations involving dipole effects179,180,189,197,198 and its
extensions199–202 as shown in Fig. 5(b). The main significance of dipole
models is to calibrate the charge response along the probe tip geome-
try. Such a probe response calibration in dipole-model families relies
on fitting the approach curve,180,181,190,203 which is the tip-sample scat-
tering variation by moving the probe tip away from the sample to the
far end. The simplest model is the point dipole model (PDM), which
approximates the probe tip as a dielectric sphere and treats near-field
responses in the sample half-space as an induced mirror image with an
equal radius.179,181 A more realistic model of s-SNOM tip-sample
interactions is finite dipole model (FDM)180 and it has three major
improvements over PDM:

(1) regarding the probe tip as an elongated spheroid,
(2) considering the charge participation of the tip end close to the

sample surface into the near-field interactions, and
(3) distinguishing contributions between the initial polarization

from the incident field and secondary polarization due to the
tip-sample coupling.

These three improvements are represented by two different
monopoles located in the proximity of the tip apex.
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Finite dipole model essentially calibrates the probe geometry by
fitting the experimental approach curve using three parameters: a frac-
tion, g, of the total induced charge in the probe tip that is participating
in the near-field interaction, an effective tip radius, R, and an effective
tip shank length, L.181

Ideally, solving the retrieval problem using FDM would be equiv-
alent to solving an optimization problem since the measured near-field
scattering spectra is a function of permittivity as well. By updating the
permittivity under a specific rule (search algorithm), minimizing the
deviation between the target and fit function would eventually provide
extracted permittivity as shown in Fig. 5(d).185,190 However, FDM was
designed for modeling s-SNOM response at mid-IR and has two major
issues when applied at THz frequencies:

1. For broadband investigation approaches like THz-TDS, the inci-
dent pulse contains all frequency components, which is referred
to as whitelight. Therefore, the crucial fitting parameter g
obtained via fitting the approach curve in the time domain only
captures an ensemble response averaged over the whole fre-
quency spectra. It neglects the frequency-dependent nature of
sample permittivity and ignores the spectrally varying tip-sample
coupling strength (antenna resonance effect).
Theoretically, one potential solution for this case could be com-
bining the approach curve measurement with THz point

spectroscopy—for each step size moving away from the sample, a
THz nanospectroscopy is performed. However, this approach is
unrealistic at the current stage without a high-power stable THz
emitter.

2. Another issue is that modeling the probe geometry cannot
remove contributions from parts of the system other than the
probe, compounded by the fact that the geometry of each indi-
vidual probe is subtly different (especially for the probes used in
THz regime) and that it changes during probe usage.

For further technical details and discussions, readers could refer
to the literature for materials regarded as a bulk180,181,202 or multi-layer
structure189,199,200 employing the dipole-model formalism.

The core of other rigorous s-SNOM models189,197 aims to calcu-
late the charge distribution and induced polarizability on the
probe198,204 involving the knowledge of the probe geometry205 using
the numerical methods. For example, the lightning rod model
(LRM),189 aims to precisely model the realistic probe geometry while
considering the field retardation between the probe and sample under
the electrodynamic formalism.

Recently, Chen and his co-workers demonstrated the recovery of
complex permittivity in broadband mid-infrared regimes from
complex-valued near-field spectra using a neural network (NN).183 As
shown in Fig. 5(e), this end-to-end pipeline is a typical standard neural

FIG. 5. Quantitative analysis for s-SNOM data: (a) a summary of workflow to analyze s-SNOM data, either to reproduce the measured spectra from known material permittivity
(a priori) or to retrieve unknown sample properties (a posteriori) from measured spectra; calibration of s-SNOM system response function: (b) A typical strategy is to character-
ize the tip by fitting the approach curve in s-SNOM measurements for further modeling purpose, and (c) a vector-nature calibration method to treat probe-sample interactions
as a black box, aiming to calibrate system responses including probe geometry from three known standards; (d) a typical method to retrieve sample properties, fitting the mea-
sured complex spectra with dipole-based models using searching/optimization algorithms; (e) a black-box method to encode probe-sample interaction inside a neural network,
training the network to learn such a complex mapping by assuming a known probe geometry. Reproduced with permission from Chen et al., ACS Photonics 8, 2987–2996
(2021). Copyright 2021 American Chemical Society.183 (f) A vector calibration method incorporating all system responses into error terms and avoiding presumed prior knowl-
edge of probe geometries. Panels (c) and (f) are reproduced with permission from Guo et al., Appl. Phys. Lett. 118, 041103 (2021). Copyright 2021 AIP Publishing LLC.130
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network with three hidden layers. Although the pre-trained neural net-
work allows the potential transfer learning and the model deployment
to other configurations, the authors also stated that it was based on a
standard Neaspec nano-FTIR probe with reproducible and nearly
identical probe geometry in each batch.183

While Chen’s study suggests the retrieved spectra were generated
using the neural network (NN), due to the small amount of available s-
SNOM training samples (less than several thousands or more in a typi-
cal deep learning scenario), such a few-shot learning problem hampers
to rely solely and blindingly on a NN black-box. If implicitly informed
by a known tip-interaction model,180,189 the training spectra need to be
generated with the assumed prior knowledge of both the probe geome-
try and the probe surface charge distribution induced by the near-field
interaction (for FDM, it originates from the calibrating parameter g
describing the effective charge response along the probe geometry).
Therefore, it appears that it would be challenging to apply such a neu-
ral network directly to the THz s-SNOM setup, considering the probe
tip geometry is generally not known nor reproducible.

Hence, considering the compromise between the extraction preci-
sion and the model complexity, there is room for an effective calibra-
tion approach that is feasible for a broad range of s-SNOM users.

A source-independent s-SNOM calibration methodology to
extract the complex permittivity (complex refractive indices) and its
derivatives, including free-carrier concentration and conductivity, is
worth developing.130 A typical THz s-SNOM, as illustrated in Fig. 5(c),
is composed of an AFM and a THz-TDS system for THz nano-
spectroscopy.

The problem is essentially a retrieval problem—by knowing
details of complex-valued scattered (reflected) electric field, how

should the material properties of the sample under test be extracted?
As the complex permittivity determines the reflectivity of the interro-
gated sample, it is essentially a procedure to describe this scattering
process, as shown in Fig. 5(f), using a physics-informed white box, in
the form of an error adapter. From the flow diagram in Fig. 5(f), one
can derive the expression that relates the incident and the scattered
fields:

Esca;M=Einc;M :¼ rsca ¼ eR � b
1� eS � bþ eD; (1)

where b is the unknown quasi-static reflection coefficient (b ¼ �� 1=
�þ 1) describing the sample material properties (eD; eR; eS) are error
terms for the adaptor, and Esca;M=Einc;M defines the measured scatter-
ing information from experiments. To perform the calibration, one
requires the prior knowledge of material properties—complex permit-
tivity—of three calibration standards with known dielectric constants,
in order to obtain error terms (eD; eR; eS).

By doing so, complicated modeling for the probe-sample interac-
tion is avoided and the errors introduced by the uncertainty of theoret-
ical model parameters (especially tip geometry) in solving an inverse
problem are eased.

The essential steps to perform s-SNOM vector calibration are fig-
uratively illustrated in a flow chart in Fig. 6. The first step is to measure
s-SNOM spectra on the sample under test in tandem with measuring
suitable materials with known complex permittivities in the probing
frequency regimes. Different from the conventional baseline-removal
approach, which directly normalizes the complex-valued spectra of a
tested sample to that of a reference (usually a perfect reflector or a
spectral-flat sample in the probing bandwidth), the vector-nature

FIG. 6. s-SNOM quantitative analysis flow chart on extracting unknown material properties from tip-scattered spectral measurements: (a) the bridging role of s-SNOM vector-
nature calibration between un-calibrated complex-valued s-SNOM spectra (red: amplitude, blue: phase) to extracted sample permittivity (red: real part, blue: imaginary part). (b)
The procedure to decipher material properties (i.e., complex permittivity) from s-SNOM scattering spectra by using an s-SNOM error adaptor to solve an inverse problem.
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calibration method demands reference spectra from three known
standards. Then, tip-scattered spectra (~Sn) of three standards at a spe-
cific harmonic order (n) are employed on the s-SNOM error adaptor
to retrieve three error terms (eD; eR; eS). These three error terms (fol-
lowing microwave nomenclature, namely, directivity, reflection track-
ing, and source match) effectively describe three s-SNOM effects from
measurements of the three calibration standards: (1) the sole probe tip
contribution without a sample underneath (eR) under the incident
waves, (2) the responsivity (eR) of the probe tip (a nano-antenna) with
a sample, (3) the multiplicative reflection process (eS) between the
polarized tip and the mirror image of sample half-space. Subsequently,
with the knowledge of three error terms obtained from experiments,
the scattering spectra of an arbitrary unknown sample could be cali-
brated and thus allows for calibrated complex-valued reflection coeffi-
cients ~b and permittivity ~�. Note that this s-SNOM calibration
procedure enables the retrieval of complex-valued permittivity of the
sample under test to be ignorant of a prior assumed permittivity
model. Additionally, the knowledge of material properties of calibra-
tion standards can either come from the literature206,207 or from far-
field measurements like ellipsometry.208–210

Measurement-specific calibration steps are always necessary for
separating background signals, inherent instrumentation, or measure-
ment errors (which are hardly well-modeled) from the tip-sample
interactions.42 This vector calibration methodology to solve s-SNOM
retrieval problems has been applied to extract complex reflectivity and
permittivity of multiple organic and inorganic materials at broadband
THz frequencies,130,195 which origins from the so-called S11 calibration
in the nomenclature of microwave vector network analyzer (VNA)
calibration.130

The importance of calibration for near-field measurements has
also been demonstrated in scanning microwave microscopy (reflec-
tion-type),211–214 where a VNA sends an incident microwave signal
through a conductive tip (usually part of a scanning tunneling micro-
scope or atomic force microscope) to the interrogated sample and fur-
ther measures reflections coming from the tip-sample interface, which
passes through the probe tip (calibration plane, before RF cables and
connectors) interfaced with an impedance matching network (usually
a half-wavelength wave transformer with a 50X shunt resistor; for
overcoming the impedance mismatch between the microwave source
and the evanescent microwave probe) and finally back to the VNA
(measurement plane).141,215 One notable effort in SMM calibration
technique development is in situ calibration, i.e., without referring to
extra calibration standards but only with the sample under the test
itself.213,214 Note that the calibration technique for AFM-based SMM
requires a highly conductive or lossless dielectric substrate141 at the
probing microwave frequencies for approach curve calibration pur-
pose.214 Instead of measuring three calibration samples, SMM in situ
calibration features the ability to extract three error terms (eD, eR, eS)
by measuring the input impedance at the probe tip with different
probe-sample distances through multiple approach curve measure-
ments, by requiring pure capacitive responses in the probe-sample pair
[i.e., Ztip-sample ¼ 1=ðGþ jxCÞ � 1=ðjxCÞ, limited to non-lossy sub-
strates (G � 0), so that the real part of the admittance response can be
ignored in approach curve measurements, Yðx; zÞ ¼ Gðx; zÞ
þ jxCðzÞ � jxCðx; zÞ]. This is achieved by simultaneously measur-
ing both SMM microwave responses [S11;mðx; zÞ] and tip-to-sample
capacitance responses by electrostatic force microscopy216

[Cðx; zÞ ¼ Ð
hFesdh as well as capacitance gradient with respect to the

tip-sample distance are derived from electrostatic force measurements,
Fes / dC=dh] for the tip-sample pair in approach curve measure-
ments.141,214 To finish the SMM workflow for extracting dielectric
constants (permittivity) for calibrated sample capacitance, a de-
embedding process of characterizing the dielectric probe is neces-
sary.217,218 Proper consideration of tip geometry modeling for
de-embedding is therefore essential,219 for example, approximating as
a capacitive sphere213 or resorting to full-wave electromagnetic simula-
tion.104 The need for an in situ calibration of SMM arises due to the
presence of stray capacitance, which can lead to inaccurate calibration
results when relying solely on the S11 calibration method for SMM
measurements. This is because the calibration plane becomes ill-
defined in the context of SMM’s capacitance-based response mecha-
nism. When exchanging between a calibration sample and the test
sample, the stray capacitance introduced by the probe tip cantilever
results in varying signals, rendering the calibration plane unde-
fined.213,214 For STM-based SMM, due to the mechanism for measur-
ing tunnel currents between the tip and the interrogated sample, the
sample substrate needs to be conductive, e.g., highly oriented pyrolytic
graphite (HOPG)213 or conductive indium tin oxide (ITO) glass as a
ground electrode,104 whereas s-SNOM can in principle investigate
arbitrary AFM-quality solid-phase sample surface without further
requirements.

Note that for validly approximating the probe as a capacitive
sphere or short monopole, the electromagnetic wavelength needs to be
way longer than the probe’s physical dimension,220 whereas this is
valid for microwave cases in scanning microwave microscopy using
typical STM or AFM tips. However, when the electromagnetic wave-
length is close to the dimension of the probe length, which is the case
for THz s-SNOM (due to the antenna resonance effect), a point sphere
approximation may not be ideal for retrieving quantitative material
properties (like complex permittivity) in s-SNOM inverse problems.

We envisage an online de-embedding process taking into consid-
eration three-dimensional probe geometry shape reconstructed by
real-time scanning electron microscopy measurements. This could be
a similar probe de-embedding strategy (with full-wave electromagnetic
simulations) for THz s-SNOM inverse problems. Such a computation-
ally expensive strategy may be realized by the synergistic development
of artificial intelligence (AI) and quantum computing on could com-
puting platforms (e.g., Microsoft Azure and Amazon Web Services) in
the future.

We also note that recent publications aim to deal with the model-
ing complexity of tip-sample near-field interactions due to the probe
geometry and sample’s surrounding environment.221,222 Chen et al.
developed for a rapid simulation approach to recover near-field optical
contrasts at a qualitative level.221 Instead of performing a time-
consuming full-wave simulation from scratch, the probe tip response
parameter is obtained by computing the difference of simulated scat-
tered fields between the consideration and ignorance of the sample
under the test. To deal with nontrivial topography in the nanosystems,
Mester et al. demonstrated an elegant approach using multiple differ-
ent higher harmonics of near-field mid-infrared scattering signals to
remove anomalous observations due to far-field incidence, without
adopting complicated electrodynamic simulations.222

We emphasize here that, each approach holds its own benefit to
analyze near-field scattering signals from s-SNOM. Depending on the
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goal and electromagnetic frequencies used in s-SNOM projects,
researchers need to adopt a suitable approach to decipher material
properties and interpret near-field observations at either the quantita-
tive or qualitative level.

In Sec. IV, significant advances using THz SNOM are reviewed,
including bulk materials, thin films, and biological samples.

IV. TERAHERTZ NEAR-FIELD APPLICATIONS
A. Why THz SNOM?

THz radiation refers to electromagnetic waves with the wave-
length conventionally ranging from 30 to 3000lm, corresponding to
the spectrum spanning from 0:1� 10 THz in the frequency
domain.223–225 The temporal scale of THz radiation is thus on the
order of picosecond, matching the energy of various collective
motions17,24 and fundamental excitations in inorganic and organic
samples.30,226,227

Three representative response mechanisms for THz waves are
illustrated in Fig. 7. For example, since electron–electron scattering is
around the picosecond scale, THz radiation is suitable for probing
intraband transitions including free-electron transport.21,227 Therefore,
THz waves have been used to characterize semiconductors and study
electrical properties of organic and inorganic nanowires24 and
films.228–230 Another frequently encountered collective motion is
inter-molecular vibrations, referring to non-covalent bonds across
molecules, like van der Waals (vdW) interactions and hydrogen
bonds.28 One of the most intriguing applications of this long-range
collective motion in the THz regimes is to determine free and bounded
water content in samples.29,30 By quantifying the absorption of THz
radiation, identifiable features of biological tissues (like human skin,
brain, etc.) can be determined to distinguish benign and malignant
areas.31–33 Meanwhile, THz radiation has been reported to be sensitive
to vibrational modes and stretching modes within a single molecule,

e.g., low-frequency collective vibrations within large molecular
chains.35,231

Apart from the above three collective motions with spectral reso-
nances as shown in Fig. 7, various organic and inorganic samples hold
distinguishable complex-valued refractive indices in THz spectra.19,232

This allows material identification and sensing applications in a wide
range of areas including biomedical imaging,31,32,233 pharmaceutical
analysis,234–236 pollutant monitoring,237 food quality assurance,238 and
art conservation.239–242

In the past, due to the diffraction limit, the above-mentioned phe-
nomena were typically investigated at the macroscale. To progress the
understanding and unveil the microscopic origin of the THz responses,
it is crucial to resolve the constituents of these ensembles at the nano-
scale. Thanks to the advent of SNOM, we are able to unravel sub-
wavelength THz features within tens of nanometers.13,15,34,40

B. Material characterization

Sections IVB1–IVB3 review THz near-field studies beyond the
instrumentation development. One of the major applications for
SNOM is surface characterization. Depending on the sample proper-
ties, we classify the studies into three different types:

(1) solid-state bulk materials,
(2) thin films and van der Waals (vdW) materials,
(3) and weakly scattering biological samples.

Since THz radiation is sensitive to free-electron transport and lat-
tices, THz s-SNOM serves as a desirable tool to probe local plasmons
and thus free-carrier profiling in semiconductor nanodevi-
ces,75,91,130,158,195,243–245 visualize plasma waves, invoke the field distri-
bution,246–248 investigate the light coupling with electrons,132,159,249–252

phonons,120,169,253,254 and excitons,255,256 strain-induced topological
transitions,257 and phase transitions258–260 in solid-state materials.

FIG. 7. Typical response mechanisms of light-matter interactions in the THz spectral range: (1) intraband transitions: the excitation of electrons into a higher energy level within
the same energy band. This leads to the intraband absorption of free electrons and free-electron movements, as shown in the left panel, which is able to be probed by THz
waves. (2) Intra-molecular vibration modes, including stretching and rotation within a single molecule. (3) Inter-molecular vibrations including weak non-covalent interactions,
hydrogen bonds, and van der Waals forces.
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1. Solid-state bulk materials

One of the most interesting THz s-SNOM application studies is
nondestructive and ultrasensitive characterization of semiconductor
devices at the nanoscale, which was for the first time demonstrated by
Knoll and Keilmann with contrasting mobile carriers in semiconduc-
tors.91 Huber and his co-workers demonstrated the first spatial con-
trasts of different doping concentrations by scanning a cut-through of
a multiple-transistor device at 2.54THz as shown in Fig. 8(a).75 This
study reveals the spatial THz responses originating from the near-field
excitation of THz plasmons. Although it is limiting to use a bolometer
to collect the spatial scattering intensity of a gas laser, this pioneering
work established the experimental possibility of quantitative studies to
rigorously extract local free-carrier concentration and conductivity of
semiconductor nanodevices using THz s-SNOM.

Ten years later, Liewald et al. reported a study of a silicon chip
with various doping concentrations using interferometric s-SNOM
equipped with a microwave mixer.100 With the tunability to obtain
monochromatic radiation up to 0:75 THz, this study displayed both
the spatially varying amplitude, in Fig. 8(b), and the phase mappings
for different doping concentrations of a semiconductor nanodevices.

The same commercial device was further investigated by
Aghamiri et al., who utilized a THz-TDS system in a purge box to
demonstrate the s-SNOM capability of relating the THz spectral con-
trast with distinctive doping carrier concentrations.158

Since the sample electrical properties like carrier concentrations
and conductivity are fundamentally determined by the complex per-
mittivity, the premise is to measure complex permittivity of the inter-
rogated sample using s-SNOM.

To enable THz s-SNOM as a useful nanoscopy to quantitatively
characterizing arbitrary unknown samples, it is vital to solve the s-
SNOM retrieval problem (an inverse problem), as defined in Fig. 5(a),
without the prior knowledge of unknown samples’ dielectric properties
(i.e., complex permittivity) nor presuming permittivity values follow-
ing the mathematical form of a phenomenological model (e.g., Drude,
Lorentz–Drude, or Brendel–Bormann model). To address above
issues, recently, Guo et al. demonstrated a quantitative nanoprobe
method130,132 for s-SNOM to measure sample complex permittivity
and thus other sample characteristics (free-carrier concentration and
conductivity)195 in a broadband THz spectral range (0:5� 1:6 THz)
under an ambient environment.

Additionally, Wiecha et al. demonstrated the capability to deter-
mine carrier density from both photo-excited and impurity-doped Si
utilizing the prior knowledge of the interrogated silicon sample’s
momentum scattering time and doping species from single-frequency
THz measurements at 0:25 THz in a home-built s-SNOM system.245

Owing to the nm-scale sensitivity of detecting free electrons, THz
s-SNOM is anticipated to probe minute heterogeneity results from the
external modulation of electronic structures as well. Facilitated by THz
broadband spectroscopy (0:5� 1:6 THz) and white-light contrast
(�0:5 THz), Kim et al. reported strain-induced THz near-field
responses across the strip conjunction of a ZeTe5 single crystal by
probing THz nano-scale conductivity heterogeneity using an s-SNOM,
which demonstrates the capability of tracking the nanoscale transition
of Dirac fermion density using THz waves257 [Figs. 8(e) and 8(f)] as
well as visualizing the conductivity heterogeneity understood as charge
fillings in grain boundary traps for MAPbI3, a perovskite material.263

Pushkarev et al. combined THz s-SNOM with a visible pump
laser to achieve time-resolved THz measurements and gain insights
into the electron motion at nanoscale with a single-crystalline GaAs
nanobars.262 They observed faster transient decay of s-SNOM signal in
GaAs nanobars at higher demodulation orders [see Figs. 8(j) and 8(k)]
and attributed it to different relaxation dynamics at surface vs bulk,
emphasizing a crucial role of interfaces in the electron response of
nanostructures. To further quantitatively correlate the nanobar geome-
try and permittivity with the fast relaxation dynamics, future studies
on THz s-SNOM probing volumes (both spatial resolution and prob-
ing depth) are required.

In addition to probing the free-electron movements in nanodevi-
ces, THz s-SNOM has also been demonstrated to reveal photon-
plasmon couplings.261 As predicted by the theory, a gated plasma wave
originates from the coupling of THz radiation into an antenna-
coupled field effect transistor. It involves the collective interaction
between the two-dimensional electron gas and gate electrode. One
approach allowing the discovery of such a light-matter coupling is tun-
ing the gated voltage to control the carrier density and plasma fre-
quency. By doing so, Soltani et al. reported the first visualization of
plasma wave field distribution in the channel of graphene FET detector
excited at 2THz,261 as shown in Figs. 8(c) and 8(d), with a propagation
distance of several hundred nanometers and a short sub-100-fs life-
time. Recently, Feres et al. reported the enhanced THz nanoimaging
contrast in graphene/hBN device with buried structures at 3.8THz
using free-electron lasers by harnessing the polariton-assisted THz
field enhancement in graphene.254

Apart from plasmons, THz radiation can also probe collective lat-
tice vibrations and thus highlight the spectral features of amorphous
or crystalline phases of a material. Chen and his co-workers observed
clear THz near-field spectral differences between the amorphous and
crystalline phase of a chalcogenide phase-change material, Ge1Sb2Te4
(GST) on a SiO2 substrate, in Fig. 8(g), using s-SNOM equipped with
a gas laser spanning the spectra from 2 to 6 THz.209 By comparing
obtained experimental near-field data to the modeled near-field spec-
tra using dielectric function extracted from far-field transmission FTIR
measurements (0:9� 350 THz), they confirmed that the spectral dif-
ferences are correlated with the distinctive optical phonon modes
between the amorphous and crystalline phase of the sample as shown
in Figs. 8(h) and 8(i). This study highlights the significance of knowing
the complex permittivity to perform further conclusive analysis in
near-field interrogations.

Benefiting from nanoscale probing sensitivity of THz s-SNOM,
Guo et al. harnessed quantitative results from THz nanospectroscopy
to aid high-precision advanced manufacturing protocols of quantum
devices for superconducting quantum computing.195 By collecting the
elastic forward scattering on test devices [Fig. 9(a1)], Guo et al. found
organic photoresist residue (tens of nanometers) which is invisible
under the conventional optical microscope, in Fig. 9(a2), and man-
aged to track the evolution of complex-valued permittivity of a
coplanar microwave resonator after multiple surface treatments as
shown in Fig. 9(a4) to further evaluate the effective removal of
fabrication-induced doping in Fig. 9(a5).195 This work reported
unintentional doping originating from wet chemical etchants as an
undesired effect, which may serve as potential loss channels of
superconducting quantum computing devices. Moreover, this
study shows that THz s-SNOM are ready to be employed to
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characterize advanced materials and nanostructures with high
charge carrier mobility, where the inference of nanoscale surface
doping and interfacial bonding are essential to understand the
microscopic mechanisms.264,265

Recently, Guo et al. extend s-SNOM calibration method130 to
multilayers,132 allowing direct quantitative analysis of both complex-
valued permittivity and thickness of an unknown thin film from a
complex nanostructure considered as being multilayer [Fig. 9(b1)].

FIG. 8. THz nano-scale investigation of solid-state integrated circuit devices, including: (a) a cut-through for multiple-transistor devices at 2.54 THz with spatially varying THz con-
trast originating from Drude responses due to the doping concentration heterogeneity. Reproduced with permission from Huber et al., Nano Lett. 8, 3766–3770 (2008). Copyright
2008 American Chemical Society.75 (b) Doped silicon random access memory at 0.6 THz with the Durde response spatial contrast. Reproduced with permission from Liewald et al.,
Optica 5, 159–163 (2018). Copyright 2018 Optica.100 (c) and (d) Device configuration as well as THz responses of a graphene TeraFET bow-tie antenna among source, gate, and
drains at 2 THz. Reproduced with permission from Soltani et al., Light: Sci. Appl. 9, 97 (2020). Copyright 2020 Nature Publishing.261 (e) and (f) THz white-light contrast (frequency-
averaged response, mainly dominated by the component � 0:5 THz) of Dirac semimetal ZrTe5 across the strip junctions. Reproduced with permission from Kim et al., ACS
Photonics 8, 1873–1880 (2021). Copyright 2021 American Chemical Society.257 (j) and (k) Optical pumped THz far-field and near-field measurements to resolve ultrafast dynamics
in GaAs nanobars, aiming to understand nanoscale charge transport in a volume-confined system. Reproduced with permission from Pushkarev et al., Adv. Funct. Mater. 32,
2107403 (2022). Copyright 2022 American Chemical Society.262 (g) THz nanoscopy investigation of chalcogenide phase-change materials, Ge1Sb2Te4 (GST) compounds on a
SiO2 substrate, with distinctive nano-scale dielectric response contrast between amorphous [(h): a-GST] and crystalline [(i): c-GST] states originating from THz optical phonon
modes within 2–6 THz. Reproduced with permission from Chen et al., ACS Photonics 7, 349903596 (2020). Copyright 2020 American Chemical Society.209
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Once the thin film complex-valued permittivity is obtained, a further
infer of conductivity, mobility, or dielectric loss is allowed [Figs. 9(b2)
and 9(b3)]. Guo et al. also validated the capability of this s-SNOM
extraction method on a well-characterized AFM standard calibration
sample (TGQ1, SiO2 squares on Si). The development of s-SNOM

extraction method on complex-valued permittivity and thickness
enhances the practical usage of THz s-SNOM for characterizing
unknown materials at the nanoscale when the knowledge of the per-
mittivity model of the interrogated sample is not available in reality.
This allows the expectation of utilizing THz s-SNOM for analyzing

FIG. 9. Complex-valued permittivity extraction from THz s-SNOM broadband spectra: (a1) and (a2) Near-field investigation of coplanar microwave resonators used for super-
conducting quantum computing: (a3) THz nanoimaging (second-harmonic signals) to identify fabrication-induced doping in clean Si channels and surface treatments (a4) aiming
to remove induced doping. THz nanospectroscopy (a5) for quantitative evaluation of fabrication-induced excess carrier concentration. Reproduced with permission from Guo
et al., Appl. Phys. Lett. 119, 091101 (2021). Copyright 2021 AIP Publishing LLC.195 (b1) THz near-field investigation of an unknown surface doped layer on a high-resistivity sili-
con substrate: (b2) retrieved surface doped thin film feasible thickness and conductivity using (b3) complex-valued permittivity measured via multiple THz s-SNOM high-order
harmonic signals (S1–S5). (b4) THz s-SNOM multilayer extraction validation on a known multilayer nanostructure (20 nm SiO2 squares on Si). Reproduced with permission
from Guo et al., Nanophotonics 12, 1865–1875 (2023). Copyright 2023 De Gruyter.132 (c1) near-field identification of localized molecular resonance peaks in crystalline-lactose
stereoisomer with first-harmonic scattering contrast (c2) with the permittivity data (c3) to reproduce the measured near-field scattering. Reproduced with permission from Moon
et al., Sci. Rep. 9, 16915 (2019). Copyright 2019 Nature Publishing Group.192
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permittivity-related information of samples, as viable as far-field THz
probe methods.17,145

Another pioneering work on the extraction of THz permittivites
from s-SNOM scattering spectra demonstrated the capability of recov-
ering molecular resonance of crystalline-lactose stereoisomer as shown
in the bottom panels of Figs. 9(c1)–9(c3).192 In this study, Moon et al.
demonstrated that the permittivity of homogeneous bulk materials,
which was inferred by comparing measured near-field data with far-
field THz-TDS measurements in Fig. 9(c3), would not change at the
nanoscale. This suggests that, once the s-SNOM reference materials
are homogeneous and bulky, the choices of calibration standards, for
s-SNOM permittivity retrieval problems, can be either spectral-flat
materials (high-resistivity silicon, gold, air) or well-documented doped
semiconductors in THz regimes.130,132 By doing vector calibration on
known bulky materials, it allows to interpret non-trivial near-field
THz spatial contrasts due to the complex sample micro-structure
topography266–268 at a quantitative level. Such an independent extrac-
tion (without presuming a permittivity-model form) is essential in
THz s-SNOM, allowing to infer the information (e.g., mobility or elec-
tron scattering rates) robustly before moving across the niche point to
overfit a permittivity or conductivity model with quite a few parame-
ters. For example, an independent and nanoscale probe of THz and
lower-frequency conductivity allows to directly study locally confined
systems with proposed microscopic pictures, including the carrier dif-
fusion within a single THz pulse269 or carrier backscattering,270,271 or
other models23 based on either classical272 or quantum-mechanical
pictures.273–276 In summary, direct complex-valued permittivity mea-
surements in THz s-SNOM is the premise to study potential sample
responses exhibiting non-Drude behavior,277 which provides indepen-
dent experimental evidence to answer at which spatial and temporal
scale shall we adopt a complicated model to describe complex nano-
scale dielectric behavior278 in a nanoscale confined system.279

2. Thin films and two-dimensional (2D) materials

THz radiation oscillates at the picosecond timescale, matching
the energy scales of various fundamental excitations and quasipar-
ticles.20 The investigation of these surface phenomena at the nanoscale
contributes to a better understanding of their fundamentals.280,281 For
example, the phonon has a considerable impact on a wide range of
crystallographic properties, including electrical and thermal conductiv-
ity, ferroelectricity, and superconductivity. Therefore, controlling the
coupling strength between photons and electrons/phonons/excitons
on emerging materials may thus offer as an intriguing fundamental
platform for future applied research. Unlike bulk materials, instead of
covalent bonds, the interlayers of van der Waals materials are weakly
bonded by van der Waals forces. These materials also are referred to
interchangeably as two-dimensional materials in the literature.282 Such
unique structures possess fascinating optical properties at the
nanoscale.

As a pioneer work, Zhang et al. demonstrated that due to unique
Dirac band structure, graphene exhibits high carrier mobility in the
range of 0:2� 1 THz, thus becoming a good THz reflector for near
fields with high in-plane momentum.243 As shown in Fig. 10(a1), THz
nano-imaging was performed on a SiO2 substrate with pre-patterned
30 nm Au lead and single-layer graphene (SLG). The corresponding
second-order harmonic THz scattering amplitude is shown in
Fig. 10(a2). It shows that the near-field reflectivity for THz waves is

comparable to that of a gold film. This study demonstrates the poten-
tial feasibility of graphene as the reference material in THz near-field
experiments. Specifically, highly oriented pyrolytic graphite (HOPG) is
accessible at an affordable price, and unlike thick noble metal, the
atomic-layer flatness could be easily achieved by just peeling off the
top few graphene layers. Moreover, graphene could be easily trans-
ferred onto other surfaces or structures without edge artifacts.
Considering that it acts as a metallic reflector in the THz regimes, gra-
phene would be an ideal candidate for both substrate and reference
materials in THz near-field investigations involving weakly scattering
biomedical samples.

In Figs. 10(d1) and 10(d2), de Oliveira et al. demonstrated that
by exploiting phonon polaritonic excitations, THz radiation could be
confined at the nanoscale on a vdW semiconductor film like a-MoO3,
suggesting the importance of next-generation vdW hererostructure
engineering to enable ultralow-loss THz polaritons for directional in-
plane propagation at the nanoscale.282 Meanwhile, surface plasmon-
polariton fringes with thickness-dependent spacing are observed in
thin films of topological insulators, including Bi2Se3 at 2:55THz, as
shown in Fig. 10(b), highlighting the importance of near-field phase
from s-SNOM spectra to analyze THz polaritons.283 Similar oscillation
fringes around the flake edge for Bi2Se3 [Figs. 10(c1) and 10(c2)] and
Bi2Te2:2Se0:5 [Figs. 10(c3) and 10(c4)] are reported at 1:99THz with
multiple different film thicknesses, revealing the contribution of two-
dimensional electron gas to hyperbolic THz polaritons hybrid with
plasmons and phonons.120

Thin film thickness, as another freedom of parameters, tunes the
effective plasma frequency and thereby THz near-field response for
the whole interrogated system in tandem with sample dielectric con-
stants. Therefore, it is crucial to decouple the contribution of a thin
film from the whole interrogated system to interpret THz near-field
responses. However, it is not straightforward to extract both thin film
thickness and dielectric constants simultaneously from tip-scattered
THz s-SNOM signals. To achieve this, Guo et al. recently proposed an
s-SNOM inversion extraction procedure for multilayer structures and
characterized THz surface plasmon polaritons in silicon quantum
devices due to a highly doped surface layer.132 With the information of
thin film thickness, Sch€affer et al. reported the quantitative nanoscale
conductivity mapping of cesium lead bromide (CsPbBr3) thin film at
grain boundaries, which indeed probed the spatially varying permittiv-
ity at the nanoscale.284 Recently, by precisely controlling the number
of layers (sample thickness), Jing et al. reported tunable THz metallic
responses on layered transition metal dichalcogenide WTe2 at 44K
using a cryogenic s-SNOM in Fig. 10(e1), demonstrating layer-
dependent Fig. 10(e2) transition of WTe2 energy bandgap.251 This
study performed by Jing et al. highlights the significance of introducing
another measurement freedom—temperature dependence for THz
s-SNOM measurements, which allows for finer understanding of
material low-energy behaviors and will be discussed in more details in
Sec. V about the road ahead.

Another experimental observable freedom is the anisotropic elec-
tronic and vibronic properties of the material platform. Recently,
phase-resolved nano-THz measurements allows the real-space charac-
terization of surface phonon polaritons285 and acoustic plasmon polar-
itons252 in semiconductor materials where the real part of the
directional permittivities holds an opposite sign to the imaginary part.
N€orenberg et al. reported the low-loss THz phonon polaritons in
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germanium sulfide (GeS, a type of van der Waals semiconductor mate-
rials) from 6 to 9THz.285 Another interesting observation is reported
by Chen et al., where the hybrid of THz plasmon polaritons to its mir-
ror image [Fig. 10(f1)] below an insulating spacer (SiO2) is observed in
low-symmetric hessite (Ag2Te) crystal at 4.25THz with in-plane

anisotropic THz responses [Fig. 10(f2)].252 This so-called THz acoustic
plasmon polariton (or image polaritons) was demonstrated to facilitate
the further confinement of THz radiation (kp=k0 � 1=65) and
decrease the polariton damping (lifetime> 0.4 ps). In a more delicate
device structure, facilitated by a similar insulating spacer (2 nm hBN)

FIG. 10. THz near-field studies on low-dimensional materials: AFM topography (a1) and THz near-field response (a2) between single-layer graphene (SLG), gold, and SiO2 by
white-light THz nano-imagining (0.2–2 THz, the spectral peak is around 0.9 THz). Reproduced with permission from Zhang et al., ACS Photonics 5, 2645–2651 (2018).
Copyright 2018 Americal Chemical Society.243 Observation of THz surface polaritons in thin flakes of topological insulators like Bi2Se3 at 2.52 THz (b) [Reproduced with permis-
sion from Chen et al., Nat. Commun. 13, 1374 (2022). Copyright 2022 Nature Publishing Group.283] and 1.99 THz (c1 and c2), Bi2Te2:2Se0:8 at 1.99 THz (c3 and c4).
Reproduced with permission from Pogna et al., Nat. Commun. 12, 6672 (2021). Copyright 2021 Nature Publishing Group.120 An a-MoO3 film at 9.22 THz (d1 and d2) with uni-
form topography [Reproduced with permission from Oliveira et al., Adv. Mater. 33, 2005777 (2021). Copyright 2021 Wiley Online Library.282] and layered transition metal dichal-
cogenide WTe2 (e1) at 44 K with thickness-dependent THz near-field responses (e2) revealed by white-light THz nano-imagining (0.2–2.5 THz, the spectral peak is around
0.6 THz). Reproduced with permission from Jing et al., Nat. Commun. 12, 5594 (2021). Copyright 2021 Nature Publishing Group.251 (f) THz real-space nanoimaging of in-plane
anisotropic THz image polaritons supported in monoclinic Ag2Te crystals on Au substrate with an insulator spacer. Reproduced with permission from Chen et al., Nat. Mater.
22, 860 (2023). Copyright 2023 Nature Publishing Group.252
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in high-mobility graphene devices, Ruiz et al. observed acoustic plas-
mon phase velocity shift at room temperature in THz regimes and
understood as the transition from the hydrodynamic regime to the col-
lisionless regime in electronic Fermi liquids.286 Essentially, this transi-
tion is realized by tuning the relationship between probing THz
wavelength and electron-electron scattering rate as well as inter-
particle collision rate, which is experimentally realized by controlling
the thickness of the insulating spacer and the resulting Coulomb inter-
action screen degree. This work demonstrates that THz photocurrent
nanoscopy based on s-SNOM is particularly useful for studying phe-
nomena in low-dimensional electronic systems.103,287 Recently, Guo
et al. reported the near-field localization of the boson peak,277 due to
the low-frequency vibrational density of states,288–290 in rare-earth
metal (tantalum) films, providing a microscopic insight into two-level-
system fluctuation as one of leading loss channels inhibiting supercon-
ducting qubits coherence lifetime. Moving from coplanar microwave
resonators, another typical meta-structure in superconducting devices
for quantum computing is Josephson junctions (metal/few
nanometer-thick insulator/metal sandwich structure). Kim et al. dem-
onstrated again THz s-SNOM advantage in quantum device, visualiz-
ing asymmetric nano-THz scattering responses across a Al/AlOx/Al
junction surface in room temperature.291 THz s-SNOM also plays a
significant role when material heterogeneity is non-negligible at meso-
scopic length scales. Examples include characterizing quasi-particles
such as exciton-polaritons256,292 in semiconductor materials or layered
transition-metal dichalcogenides with THz excitation which could be
promising for many novel THz applications in photonics, information,
and quantum technologies.

Since being low-loss and low-damping is technologically
essential to achieve the practical realization of polariton-based on-
chip circuitry or other nanophotonic devices, the direct characteri-
zation of THz polaritons at the nanoscale is significantly important
to explore further candidate materials with ultraconfined and
long-lifetime polariton responses. As recently demonstrated by
Obst et al.293 on a typical anisotropic layered semiconductor
(a-molybdenum trioxide), tunable in-plane hyperbolic polaritonic
dispersion has been tuned by adjusting the twisted angle between
two mechanically exfoliated layers (80–120 nm per layer) to
achieve the canalized propagation. Note that Duan et al. recently
demonstrated the existence of multiple photonic magic angles in
trilayer a-molybdenum trioxide devices visually by near-field
nano-imaging on stacks with different inter-layer angles.294 The
same strategy should be translatable to other vdW materials hold-
ing non-trivial permittivity tensors in THz regimes.

From the point of structural and optical response symmetry
breaking, lowering the material system’s structural and therefore opti-
cal response symmetry is the key to realize extreme polaritonic
responses.295 Finding non-trivial twist angles of THz polaritons is an
effective approach to tailor broken symmetry and thus tuning the
degeneracy of phonon resonators. The field is witnessing the presence
of in-depth studies on the quantitative investigation of nanoscale THz
anisotropic responses in materials characterized by non-trivial permit-
tivity tensors and intentionally modified optical response symmetry at
the moment. In platforms using native materials, one should anticipate
optical response symmetry breaking characterized by non-trivial THz
permittivity tensors without identical diagonal components nor rota-
tion invariance (anisotropy), particularly in low-symmetry materials

such as orthorhombic, monoclinic, and triclinic crystals, while its inter-
play with non-Hermiticity (dictating absorption or loss in materials)
on THz nanoscale responses is also an under-explored area. For
achieving exotic THz material platforms by van der Waals engineering
in the future,296,297 quantitative s-SNOM approach to elegantly and
robustly recover anisotropic complex permittivity tenors is necessary.
By engineering the axial complex-valued permittivity in meta-struc-
tures298 or van der Waals heterostructures,299 tunable lattice vectors in
the reciprocal space matching with THz polariton dispersions300 for
nano-waveguiding and energy transfer functionality is possible in the
future.

In this part, aforementioned pioneering THz near-field studies
suggest that two-dimensional materials can serve as a potential plat-
form for tunable control of long-wavelength radiation like THz waves
and pave the way for surface-enhanced spectroscopy in THz regimes.
The capability of THz s-SNOM for nondestructive quantitative charac-
terization devices performance sensitive to nanoscale electronic hetero-
geneity (e.g., surface doping, mobility, charge-carrier effective masses)
and thin-film thickness opens the door to facilitate next-generation
applications, including thin-film transistors,301 perovskite-based nano-
devices,302–305 and flexible electronics based on piezoelectric306–309 and
triboelectric effects310 where microscopic conductivity and material
heterogeneity in multilayer nanostructures matter for nanodevice
performances.

3. Biological samples

Recently, studies have been showing the capability of SNOM to
interrogate biological samples. In THz regimes, apart from inter-
molecular vibrations like hydrogen bonds and van der Waals forces,
long-chain intra-molecular vibration and rotation also hold finger-
prints. These molecular responses have been exploited to aid the iden-
tification of biomacromolecules including DNA, lipid, melanin, and
saturated fatty acid28,35,233 as well as multiple skin constituents (e.g.,
melanin, keratin, collagen).314

THz SNOM has been employed to investigate mouse brain tissue,
bacteria, proteins, fruit cells, and peptides of different secondary struc-
tures.196,311–313,315,316 THz s-SNOM researchers first demonstrated the
observable contrast between the interrogated biological samples and
the underlying substrate312,313,316 and then started to retrieve quantita-
tive metrics relating to material properties (e.g., conductivity) from the
near-field contrast.196,311 A typical pipeline to study biological nano-
wires using a THz s-SNOM is shown in Figs. 11(a) and 11(b), where
the observable THz contrast across the sample and substrate is the pre-
mise before the discussion of further scientific analysis. The first exper-
imental near-field THz investigation of biological samples was the
nano-THz response in immobilized Pseudomonas fluorescens bacte-
ria.316 The authors tried various substrate choices and found that
GaAs and Au were preferred candidates in detriment to early and
widely adopted mica to highlight THz near-field responses at the
nanoscale. In this study, Sch€affer et al. showed a preliminary attempt
to extract the bacteria’s permittivity. Due to small dielectric constants
of the interrogated bacteria in THz regimes and thus the low signal-to-
noise ratio, the authors only managed to recover similar scattering
amplitude of the result by mimicking the interrogated bacteria as
PMMA.

Recently, researchers employed SNOM to reveal the relationship
between the secondary structures of peptides and their electrical
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properties, like conductivity. Figures 11(c) and 11(d) show the spatially
varying THz responses of peptides at nanoscale [panel (c)], achieved
by THz s-SNOM, and at millimeter-scale [panel (d)], achieved by THz
a-SNOM, reported in recent ground-breaking THz SNOM biological
studies with quantitative analysis on near-field data to retrieve peptide
electrical properties.196,311 Heo et al. distinguished oligomerization and

fibrillization state of amyloid beta protein in the buffer solution from
near-field THz conductance measurements using an aperture
SNOM.311 With the cost of spatial resolution and loss of topography,
aperture-type SNOM demonstrated its potential to investigate biologi-
cal samples in vivo with resolvable features at tens of micrometers in
THz regimes. Meanwhile, by employing s-SNOM, Solemanifar et al.

FIG. 11. THz near-field contrast for biological samples using SNOM: THz s-SNOM contrast nanoimaging (a) on native bacteria nanowires, electrically conductive
Geobacter protein nanowires, with simultaneously measured topography and (b) near-field THz responses on an individual bacteria nanowire without requiring a direct elec-
trical contact at the nanoscale. (c) Synthetic bacteria peptide nanowires with different secondary structures with THz nanoscale responses achieved by s-SNOM.
Reproduced with permission from Solemanifar et al., Nanotechnology 33, 065503 (2021). Copyright 2021 Institute of Physics.196 THz near-field imaging to track the biologi-
cal process (d1) for monomer and oligomer before deforming to be as peptides with THz spectral-averaged contrast (d2) at the millimeter-scale achieved by an a-SNOM.
Reproduced with permission from Heo et al., ACS Nano 14, 6548–6558 (2020). Copyright 2020 American Chemical Society.311 (e1) Individual Y-like shape antibody (IgG,
as a majority of serum antibodies in humans) molecule on graphene with (e2) THz spatially varying near-field response around 150 nm using an s-SNOM. Reproduced with
permission from Li et al., Small 17, 2005814 (2021). Copyright 2021 Wiley Online Library.312 (f1) The topography and THz near-field responses of watermelon pulp cells in
a 5 h dehydration process (f2)–(f6) with noticeable spatial features around tens of micrometers using an a-SNOM. Reproduced with permission from Li et al., Cell
Proliferation 53, e12788 (2020). Copyright 2020 Wiley Online Library.313

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021306 (2024); doi: 10.1063/5.0189061 11, 021306-20

VC Author(s) 2024

 24 N
ovem

ber 2024 03:57:31

pubs.aip.org/aip/are


demonstrated to resolve smallest 10nm high topological features of
synthetic peptides [Fig. 11(c)] along with THz spatial varying contrasts
within 100 nm.196 This work also managed to recover the THz con-
ductivity of different synthetic peptides with different secondary struc-
tures. While it shows the potential of developing novel bioelectronic
devices, implantable sensors, and green electronics, it also draws the
attention of biology research community on the power of THz s-
SNOM as a novel and nondestructive technique to characterize bacte-
rial nanowires.

Similar progress utilizing THz near-field contrasts to study bio-
logical processes is shown in Figs. 11(e) and 11(f). Yang et al. reported
resolution of individual immunoglobulin G (IgG) and ferritin mole-
cules on graphene substrates [Fig. 11(e)] at around 150nm spatial res-
olution using THz s-SNOM with white-light contrasts from a TDS
system.312 Although no quantitative metric, such as complex permit-
tivity, was extracted, this study highlights graphene (atomic-flat rough-
ness and metallic reflectivity) potentially desired as a substrate for THz
biological contrast imaging using s-SNOM. The same group also
attempted to apply THz aperture-type SNOM on biological samples
and Li et al.managed to monitor temporal drying evolution of a single
watermelon pulp cell at 1.66THz over 5 h, in Figs. 11(f2)–11(f6), with
a spatial resolution of �20 lm using an a-SNOM.313 However, due to
the low spatial-resolution capability of THz a-SNOM, a negligible THz
near-field spatial contrast was reported within a single cell due to dehy-
dration. Although this study failed to distinguish cellular organelles in
the cytoplasm of a single cell, it represented a good starting point for
THz near-field biological studies.

We also note that SMM researchers have undertaken endeavors
to achieve quantitative microwave measurements in liquids for biologi-
cal applications.104,144,317–320 To address the challenges of strong
absorption encountered when directly immersing the probe tip in
liquids318 and the complex interactions (beyond pure-capacitive
responses) with live cells in physiological buffers,104 Tselev and col-
leagues demonstrated an elegant approach. They separated the probe
tip and the samples using an ultrathin membrane (made of
nanometer-thick silicon nitride or silicon dioxide) mounted on silicon
frames (liquid cells), which were initially developed for supporting
samples in TEM (transmission electron microscopy) studies.317 This
innovative approach enabled the imaging of single yeast cells in glyc-
erol solutions, capturing their responses to 5GHz microwaves.
Recently, the inverted-SMM technique was showcased for interrogat-
ing mitochondria in an isotonic glucose solution,144 alongside ongoing
advancements in calibration methods that account for the lossy nature
of the medium.320 Another recent interesting SMM study involving
liquids shows how a nanometer-thick water meniscus acts as a nano-
scale microwave iris formed between the probe tip and a twist-layer
graphene (TBG) system for concentrating microwave electromagnetic
fields within small areas, which is used for explaining imaging results
of Mori�e patterns at different twisted angles with 1 nm spatial resolu-
tion.319 Note that this strong coupling enhancement effect is attributed
to the high dielectric value of water (� 81) at 3GHz. This diminishes
the impact of the sample’s geometric capacitance, in turn enhancing
the contribution of quantum capacitance—which is closely associated
with the electronic properties of the sample—to measured near-field
microwave signals. As a result, the contribution of the sample’s free
carrier concentration to the microwave signal is increased due to the
increased contribution from quantum capacitance.321 For THz

s-SNOM, such a near-field coupling enhancement realized by intro-
ducing an additional adventitious liquid layer with impedance-
matched permittivity values at THz frequencies is a potential new
strategy to be explored and verified. For achieving nanoscale imped-
ance matching and enhanced THz near-field couplings, we envision
recently demonstrated virtual gain approaches for amplifying
evanescent fields322–324 as well as next-generation nanoscale metalens
techniques325 may serve as viable options in the future.

To further unveil the origin of both THz temporal and spatial
response change, it would be interesting and necessary to observe THz
near-field spatial contrasts among nucleus, vacuole, and Golgi appara-
tus in the future, harnessing high spatial-resolution capability of an s-
SNOM. THz-specific protocols (e.g., liquid permittivity, membrane
permittivity, membrane thickness) are therefore essential to be
explored iteratively in practical experimental investigations for optimal
near-field imaging and spectroscopic measurements.

While the near-field response contrast between the sample and
substrate could be enhanced by tuning the permittivity difference
between these two, a quantitative interpretation of the convoluted
near-field responses in the tip-sample-substrate triplet is non-trivial
and usually relies on a well-documented vibration mode database326 to
infer the information of molecular vibration modes in the interrogated
sample system.327 Such auxiliary knowledge of THz molecular
responses is not as well-documented as that for mid-infrared cases,
which requires continuing efforts of THz spectroscopic studies in the
community for creating a database with reproducible molecular vibra-
tional mode information.231,328,329

Apart from investigating dried biological samples using s-SNOM,
probing living cells or organic samples in liquid environment has been
demonstrated so far in mid-infrared regime using s-SNOM.
Meanwhile, it would be exciting to expect in vitro THz near-field stud-
ies employing s-SNOM to unveil nanoscale features of biological sam-
ples in the future.

V. THE STATE-OF-THE-ART AND THE ROAD AHEAD

The pairing of s-SNOM and THz radiation sources with a coher-
ent detection scheme has distinct advantages, particularly for THz
nanoscale quantitative analysis on interrogated samples. Applications
reported to date range from probing collective modes in materials such
as conductivity, phonon resonances, and surface polaritons in solids,
quantifying localized THz permittivities at the nanoscale for material
analysis, undertaking THz nano-imaging on inorganic samples, and
performing nano-spectroscopy on biomarco-molecules. Within these
applications, the majority are performed with a solid-state sample at
room temperature.

Now, we are able to experimentally measure THz sample
responses, in contrast to the substrate or other reference materials, at
the nanoscale as well as able to interpret such tip-scattered responses
at a quantitative level, the next question we need to answer is—what
kind of research questions can THz s-SNOM solve with appealing
advantages over other methods? Are we finishing the instrumentation
or the methodology developments? What else do we need to achieve
before employing THz s-SNOM to address urging scientific questions
and potentially push the domain knowledge boundary in other disci-
plines? We would like to point out open challenges other than pushing
spatial resolutions. In this section, we envision the road ahead for THz
s-SNOM in the future and sort them in order of fundamental signifi-
cance along with readiness in light of previous s-SNOM studies.
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A. Soft materials: Live cells in liquid

Since the demonstration of near-field infrared spectroscopic
investigation on a single tobacco mosaic virus,330 s-SNOM has been
employed in various solid-state soft biological samples,330–334 includ-
ing insulin aggregates, purple and lipid-like peptoid membranes,331–333

and ferritin protein complexes.332,334 These studies demonstrate that s-
SNOM is capable of revealing a secondary structures such as a-helical
and/or b-sheet structures from near-field optical responses.331,334

However, to truly enable nanoscale s-SNOM investigation of living
cells or tissues, the premise is to collect measurable near-field s-SNOM
signals in liquid environments. However, s-SNOM cannot directly
probe wet samples, including biological objects like living cancer cells
or bacteria. This is because wet samples contaminate the tip and the
samples can change upon evaporation during scanning.335,336

Recently, several researchers aimed to circumvent these problems
and report the successful observation of near-field contrast in mid-
infrared regimes using s-SNOM.335–340 One of the remarkable advan-
ces is reported by Kaltenecker et al.,336 who demonstrated the interfer-
ometric s-SNOM measurements of living Escherichia coli cells. Unlike
encapsulating the sample with two graphene sheets as proposed by
Khatib et al.,335 Kaltenecker et al. proposed to cover the sample with a
10 nm SiN membrane, and utilize sub-surface imaging capability of s-
SNOM to probe living E. coli cells in the liquid solution below a thin
membrane. This method avoids the previously reported issues encoun-
tered using the encapsulation approach, including the deviation from
samples’ native topography due to the compression by encapsulation
materials.335

Regarding the use of THz nanoscopy, to our knowledge there are
no s-SNOM studies to report the measurable amplitude and phase
from the biological samples in liquid yet. It would be intriguing to use
THz s-SNOM to characterize biomolecular processes in liquid, either
in an enclosed cell or a fluid channel with flowing buffer solutions.
Considering that THz waves are sensitive to free-electrons and have
the potential to reveal various unique features in biological samples,
THz s-SNOM may be employed to unveil the micro-mechanism and
track the progression of the electron transport property of bacteria
induced by free nitrous acid,341,342 extra-cellular electron transport
within microbial bacteria in bacterial biofilms and sludges,343–348 or
further study microbial nanowires with long-range electron trans-
port349–353 combing with a direct conductivity measurement354 and
chemical composition localization355 at the nanoscale in a nondestruc-
tive way. Additionally, liquid-based THz radiation emission356,357 and
detection,358,359 the so-called THz aqueous photonics, has been dem-
onstrated as an emerging area recently. One question is left to be
answered—is it possible to utilize such THz-liquid interaction as a
nanoprobe for biological samples in liquid using an s-SNOM?

Apart from future demonstrations of THz in-liquid studies
using s-SNOM, an interpretation of such scattering signals from
the liquid using either encapsulation or sub-surface approaches
requires the adequate knowledge of the probing depth and volume
of THz s-SNOM, which is essential to recover complex permittivity
of such a multi-layer structure (encapsulation layer/sample/solu-
tion), including the biological samples in the liquid environment.
Considering the complex nature of the s-SNOM scattering
signal,360 a versatile approach dealing with both the phase and
amplitude of s-SNOM scattering signals from the liquid with
encapsulation layers is in demand in the future.

B. Probing depth and effects of multilayer structures

One of the open challenges for THz nanoscopy is local quantita-
tive characterization as well as capturing fast events at ordinary condi-
tions (also in liquid, in the case of biology), which requires the
capability to quantify near-field responses in multilayer and buried
nanostructures. High-resolution subsurface imaging remains a nano-
metrology challenge to electromagnetic and acoustic dispersion and
diffraction, although single-molecule-scale probing of material surface
properties has been achieved.361,362 Measuring the subsurface domain
poses an inverse problem, which is usually a nonlinear challenge.363 As
a result, in order to nondestructively acquire insights into the interior
of a material, it requires quantitative knowledge of how deeply the
detected signals are responsible for the material’s inner structure. On
the other hand, spectral features of solvated molecules from typical
far-field THz spectroscopy measurements with micro-fluidic platforms
are mostly in the absence of resonant absorption peaks.364 This
feature-less THz spectral continuum may be due to an increasing den-
sity of hydrogen bonds364 with an averaged dielectric response between
the host medium and the scatterers (solvated molecules) over hun-
dreds of micrometers. To explore THz opportunities for potential
molecular fingerprints in the native environment and other important
transient and dynamical processes in liquids, prior studies on THz
near-field probing depth and multilayer (also buried) nanostructure
effects are important.

Recent s-SNOM calculations and experimental studies carried
out in visible365–367 and mid-infrared188,190,366,368–370 regimes correlate
the probing depth with various factors including the tip tapping ampli-
tude, tip radius and demodulated harmonics.190 The estimated s-
SNOM sensing depth varies from tens of nanometers to more than a
hundred nanometer on different samples. Recently, Guo et al. demon-
strated an s-SNOM multilayer extraction procedure to recover both
thickness and complex-valued permittivity of fabrication-induced sur-
face layer in silicon-based nanodevices.132 Nevertheless, further THz s-
SNOM experimental efforts are needed to answer quantitatively what
is the sensing limit in surface normal direction, especially for subsur-
face layers in multilayer nanostructures. Remarkably, a detailed study
of probing depth at THz frequencies and recovery of THz permittivity
of multilayer structures is a relatively unexplored terrain. Moon et al.
reported sub-surface contrast of 30 nm Au grating buried in a thick
Si3N4 layer.

97 However, there is no quantitative mapping between the
probing depth with the s-SNOM operational parameters and the sam-
ples’ complex permittivity. This might relate to the difficulty of collect-
ing sufficient scattering power of THz near-field radiation from the
Authors’ home-built s-SNOM.

To enable the quantitative interpretation and THz nano-scale
local mapping of biological samples in liquid, it is essential to
advance a detailed understanding of THz probing depth with mul-
tilayer nanostructures to encapsulate under-study samples in
buffer solutions. We envisage an experimental design and plan for
THz s-SNOM investigating (Fig. 12) materials in liquid environ-
ments in light of pioneer demonstrations in mid-infrared
regimes.336,340 Monolayer membrane and nanosheets371–373 with
tunable low-dimensional THz dielectric properties, i.e., tunable
nanochannels for THz photon penetration, are envisioned as the
capping layer candidates. To avoid being broken by tip tapping
motions, the mechanical properties of the capping layer need to be
compatible with the spring constants of s-SNOM probe tips.
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A desired s-SNOM liquid cell is expected to be optimized with
an iterative strategy (Fig. 12): (1) find the optimal capping layer
thickness and substrate, subject to observable thickness-dependent
near-field responses from the covered substrate; (2) quantify the
probing depth of the dipole–dipole interaction in the designed liq-
uid cell in air. Find the critical shallow trenching depth where
the air gap screens the doped substrate near-field interactions
[Figs. 12(a) and 12(b)]; (3) fill the buffer solution in the liquid cell
(multilayer nanostructure) and refine the etching depth to achieve
substrate-enhanced near-field interactions due to the strong water
absorption for THz waves; (4) with optimized geometrical struc-
tures iterating through (1–3), measure THz near-field responses in
the refined liquid cell at the nanoscale [Fig. 12(d)]. To spatially
quantify complex-valued dielectric constants or absorption coeffi-
cient of the sample in liquid, the liquid cell may be fabricated
with two-dimensional materials and semiconductors of several
known doping concentrations for the calibration purpose. Due to
well-documented dielectric properties in THz regimes, doped Si
and GaAs are envisioned as possible candidates to stay at a niche
point, where subsurface near-field interactions enhanced by their
high-value permittivity (larger than high-resistivity Si)374–380

as well as the semiconductor shallow etching performance is pre-
dictable.381,382 Another motivation for multilayer nanostructures
engineering383 is to realize THz polariton-based nanoscale interferome-
try. Considering the ultra-compressed capability of free-space THz
wavelength132,252,254 and remote probing sensitivity on molecules384 by
surface polaritons, THz polariton-based interferometry is envisioned as
a non-contact solution for remote probing the existence of adjacent mol-
ecules at the nanoscale. The future development of an analysis frame-
work for ultra-confined and highly damped THz evanescent waves is

necessary to allow the quantitative characterization of deposited mole-
cules using THz polariton interferometry.

C. Probe geometry and coating design

Over the past two decades, the s-SNOM community has man-
aged to demonstrate THz spatial features down to tens of nanometers
using sharp tips, with a notable progress that Maissen et al. showing
spatial resolutions down<15 nm at THz frequencies.63,162,164,165 In the
past, it was considered that the spatial resolution of an s-SNOM is
determined by the tip radius. However, as reported by Maissen
et al.,164 a blunt tip (radius: 750 nm) can resolve THz features down to
100 nm in an s-SNOM. This suggests that the spatial resolution of
THz s-SNOM could be affected by a combination of multiple factors,
including the probe tip radius, tapping amplitude, signal demodulation
harmonic orders, permittivities of probe and interrogated samples at
THz wavelengths, as well as the probe tip geometry.

To advance THz s-SNOM capacity, exploring the exact probe tip
shape (arrow, elephant-nose, Akiyama, etc.) is essential to increase the
signal-to-noise ratio for THz scattering signals.385,386 Usually, the
probe tip used in THz s-SNOM is platinum/iridium metalized.
Recently, researchers reported the capability to tune the spectral
enhancement by designing a customized metal coating on the tip.168

The influence of coating patterns on the confined field enhancement
near the tip end, in combination with the tip shank length and incident
wavelengths, needs continuing exploration in the future.

D. Cryogenic probing for low-temperature physics

Over the last two decades, imaging using s-SNOM under ambient
conditions has resulted in a slew of scientifically significant findings.

FIG. 12. An envisioned experimental design for THz near-field investigations on biological samples in water or other liquids: (a) Intrinsic SNOM probing of a molecule without
destructive or invasive touch. (b) A THz s-SNOM measurement strategy for probing near-field light-matter interactions in the solvent (liquid) environment. (c1) THz near-field
dielectric characterization of multilayer structures using prepared substrate (bulk) and capping layer materials. (c2) and (c3) Find the optimal liquid cell etching depth allowing
substrate-enhanced near-field interactions with air or liquids encapsulated by both the capping thin-film layer (at the top) and the substrate with etched nanochannels (at the bot-
tom). (c4) Non-contact near-field investigation of samples in their native environments (with liquid or buffered solutions). Reproduced with permission from Guo et al.,
Nanophotonics 12, 1865–1875 (2023). Copyright 2023 De Gruyter.132
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On the other hand, intriguing phenomena of fundamental physics
often happen solely at cryogenic temperatures387–391 and require nano-
scale optical techniques for their interrogation. Therefore, it is impor-
tant to enable s-SNOM operation at cryogenic conditions. The
progress in this direction began with pioneering home-built sys-
tems,392,393 including remarkable demonstrated operation at as low as
5K for non-interferometric operation.394,395 Recently, a commercial
cryogenic s-SNOM system was developed by attocube systems AG
(Haar, Germany). It demonstrated the capability of interferometric s-
SNOM imaging and spectroscopy at temperatures between 6 and
10K,396 significantly improving operating temperature range, data
quality, and, most importantly the accessibility of cryogenic optical
nanoanalysis. The cryogenic operation outside MIR regimes, including
THz or even visible ranges, is currently under development with pru-
dent tests. The ability to perform temperature-dependent THz s-
SNOM measurements allows to in situ probe temperature-dependent
permittivity (absorption coefficient) quantitatively. The information of
absorption coefficient in low-frequency regimes, for example, from 0
to 2THz regimes, allows to probe the information of density of
states397 experimentally at the nanoscale using s-SNOM.277 The access
to such experimental observable398–400 is significant to further study
low-frequency vibrational dynamics and mode excitations in complex
systems (e.g., glass),401 including ordered and disordered systems402

with insights obtained from molecular simulations and theoretical
modelings.403,404

Currently, no SNOM measurements have been performed at
millikelvin temperatures. The cryogenic probing using THz s-SNOM
in tandem with strong magnetic field is the also terrain with limited
studies. Recently, an experimental breakthrough down to sub-2-Kelvin
nano-THz contrasts has been reported by Kim et al.with the capability
of externally applied magnetic field (up to 5 T) using an s-SNOM.405

Continuing efforts addressing the signal-to-noise ratio of THz s-
SNOM are the premise for the community to draw conclusions further
from THz near-field responses observed in cryogenic temperatures. In
addition to the tunability of magnetic field,406 THz cryo-SNOM is able
to visualize the profound effect of orbital motion of the charge carriers
at their native nanometer length scales, allowing to offer direct experi-
mental observations for physics phenomena where quantization is
non-negligible, for example, Landau quantization.407,408 While the
manner to cool temperatures below liquid helium from the room tem-
perature is expensive and time-consuming, another technical compli-
cation to performing s-SNOM measurements at such low
temperatures is due to the limited cooling powers of dilution fridges
and the corresponding required optical access for THz radiations. For
nanoscale material heterogeneity characterization, it would be expected
to allow THz s-SNOM to operate at close to the device operating tem-
perature, which would aid both fundamental and applied science proj-
ects, for example spintronic devices made by spin gapless
semiconductor,409 qubit devices optimization for superconducting
quantum computing410,411 or other polariton-based nanophotonic
devices fabricating by III–V semiconductors, topological insulators or
other quantum materials, and providing direct experimental evidence
to understand THz intra-nanowire dynamics for nanowire-based THz
devices.412

To harness THz s-SNOM uniqueness of resolving complex-
valued permittivity at the nanoscale, cryogenic nano-THz probing on
exotic phenomena happening at the nanoscale, like the Casimir

effect,413,414 summon the development of THz cryo-SNOM with high
signal-to-noise ratio to derive reliable physics interpretations. One
option to obtain a quantitative interpretation of near-field responses in
THz cryo-SNOM is effectively removing non-idealities of the measure-
ment system with vector calibration, which has recently been reported
in low-temperature microwave reflection measurements by near-field
SMM.415 We note that, recently, Wit et al. reported an SMM calibra-
tion method to calibrate system response for recovering complex
impedance without referring to three documented standards. Instead,
Wit et al. concurrently measured retraction curves (in s-SNOM litera-
ture, it is usually referred to as approach curves) of both microwave
reflection signals and conductance (real part of complex conductance)
signals of the interrogated sample while assuming the unmeasured
capacitance as a constant.415 However, this method is hard to directly
translate for calibrating s-SNOM responses for general cases, since
practically it is difficult to derive the real part of the complex permittiv-
ity of the interrogated sample (which is also frequency-dependent)
before calibrating the system response. Therefore, we still suggest the
essence of three well-documented standards for s-SNOM vector
calibration.

Finally, we anticipate the vector calibration for THz s-SNOM,
demonstrated at room temperature,130,132 to be extended to low-
temperature nanoimaging and nanospectroscopy measure-
ments.405,416,417 This will allow us to study microscopic physics phe-
nomena happening at low temperatures more quantitatively, for
example, terahertz magneto-optical activity at the nanoscale in the
future.418,419

E. AFM-THz: An analogy to AFM-IR

Unlike s-SNOM that collects scattering optical signals from the
sample, AFM-infrared spectroscopy (AFM-IR) probes the local ther-
mal expansion of a sample resulting from absorption of infrared radia-
tion upon external illumination. The detection is performed by
monitoring the probe tip tapping response under pulsed illumination
via AFM.420 In the same way, with the illumination of THz radiation,
a similar detection scheme could be implemented. During the scan-
ning, the absorption of incident THz radiation on the sample leads to
the modulation of probe cantilever oscillation. A high-power THz
stimulus, for example, from pulsed QCL can be an ideal THz radiation
source to implement AFM-THz. The probed thermal expansion of the
sample due to absorption of THz radiation allows to further study on
low-frequency vibration modes of the interrogated sample.
Amorphous materials like glasses or other material systems with
potential low-frequency modes may be suitable candidates for AFM-
THz.404 We envision that AFM-THz would need to be operated in a
cryogenic environment.

F. Tissues characterization at the cellular level

Skin cancer which includes melanoma, squamous cell carcinoma
(SCC), basal cell carcinoma (BCC), is a common malignancy that has
shown a continuing drastic increase in Europe, Canada, and the
United States, along with the highest incidence rates reported in
Australia.421 Melanoma is considered as the most dangerous of the
skin cancers,422 and the early stage recognition of atypia in dysplastic
nevi423 helps provide a better diagnosis of patient survival.

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021306 (2024); doi: 10.1063/5.0189061 11, 021306-24

VC Author(s) 2024

 24 N
ovem

ber 2024 03:57:31

pubs.aip.org/aip/are


The ability to observe preliminary structural features during the
benign-malignant transition, therefore, is essential for assisting in the
early stage diagnostic recognition and further medical intervention.
Typically, the conventional characterization technique on skin tissue is
histology staining, which only offers evidence only on formed malig-
nant/cancerous regions. However, there is no reliable and mature tech-
niques yet to highlight the early stage formation of skin lesions in the
benign-malignant transition.

THz radiation, as a non-ionized electromagnetic wave, has been
reported to respond with various types of tumors,27,31,32,424 including
skin (SCC, BCC), gastric,425 oral,426,427 brain,428 breast,429 and liver430

cancers. Its non-ionized nature promises a biologically safe investiga-
tion and the unique light-matter response enables a label-free tissue
characterization technique for lesions.

Notwithstanding the fact that THz contrasts existed in various
malignant tissues, the underlying contrast mechanism and origin are
not well understood in cellular level. The initial belief blamed to the
accelerated metabolism of tumorous/cancerous tissues than the benign
ones, and therefore resulted in an excessive amount of water.431 This
explanation was adapted by pioneering medical physicists from
Cambridge to explain the first observed THz tumorous contrast in
early 2000s.432–434 This water-induced THz contrast mechanism was
continuously attributed to by most THz tumor/tissue studies till 2010.
Sy et al. at the first time experimentally verified non-water-related THz
response on liver cirrhotic tissues fixed in formalin,430 and it guided
the community to study THz non-water-related contribution like the
increase in cell density, lipids and proteins,435,436 and other biomacro-
molecules,28,29 including fatty acids,35 DNA,328 etc.

Specifically, for melanoma skin cancer, both its precursor—
nevus—and original pigment—melanin—have been reported with
THz responses.437,438

In spite of these progresses, there are still several fundamental
and key questions to be studied and answered for bridging THz and
medical researchers as well as realizing the anticipated label-free early
stage diagnosis of melanoma skin cancer:

1. How does microscopic spatial structural change of a potential
melanoma tissue affect THz response and relate to signatures for
early stage recognition?

2. Within a single nevus cell, does THz radiation respond to any
specific kind of organelle, like nucleus, cell membrane, nucleolus,
mitochondria, lysosomes, vacuoles, etc.?

3. How does a cellular-level (nanoscale) THz response from differ-
ent spatial locations of tissue form the averaged electromagnetic-
tissue response in hundreds of lm scale, for the sake of real-time
THz scanning in the future?

Currently, a majority of mechanism studies attempting to unveil the
origin of THz tissue contrast are drawing conclusions from far-field mea-
surements, with spatial responses averaged over a couple of hundred lm
and ignorant of the ramification of samples’ cellular-level inhomogene-
ity.32 Thus, attempts to explain THz contrast origins, which are drawn
from far-field THz measurements, screen out the cellular-level features,
average the responses within a beam spot, and thus hamper direct evi-
dence of proposed THz contrast origins. Although water is still considered
as the major THz-tissue response contributor,30 tissue inhomogeneity and
water-free THz responses from microscopic structural variations in tis-
sues32 at the nanoscale require study for the delineation of cancer margins

and the direct evidence of THz non-water-induced skin cancer contrast.
Recently, Kucheryavenko et al. revisited the applicability of the effective
medium theory for describing THz wave interacting with soft turbid tis-
sues by using THz immersion microscopy to extract optical constants of
tissue-mimicking phantom (subwavelength and mesoscale SiO2 particles
embedded in a hydrated gelatin slab) by considering the relative volume
fraction of a constituent in a composite material in spatial-averaged mea-
surements.439 We anticipate that THz s-SNOM can provide microscopic
observations for further revisiting theoretical predictions based on
Lorenz–Mie scattering and effective medium theory. More importantly, a
direct sub-molecular-level mapping of complex permittivity via THz s-
SNOM allows studying an interplay between THz-wave absorption and
scattering mechanisms in multilayer turbid tissues with an anisotropic
geometry with direct microscopic evidence in the future.

The sub-cellular understanding of the THz response on lesions/
tumors is essential to interpret the experimentally observed THz con-
trast in various tumorous tissues either in vivo or ex vivo. It is signifi-
cant to further bridge THz studies with medical communities realizing
this label-free in vivo recognition of lesions/tumors for pragmatic early
stage diagnosis and medical intervention.

Owing to the deep-subwavelength resolving capability of s-
SNOM, direct access to the cellular-level features of tissues is possible.
In a pioneer work, Kanevche et al. has demonstrated measurable sub-
cellular contrasts at mid-infrared wavelengths from the intracellular
structures of eukaryotic (Chlamydomonas reinhardtii) and prokaryotic
(E. coli) species.440 To further pinpoint and decipher microscopic
responses from macroscopic spatially averaged THz signals, the pre-
liminary requirement is to confirm THz waves are responsible for tis-
sue constituents (e.g., collagen, melanin and typical proteins).314

Hence, it is rational to harness the capacity of THz s-SNOM to
resolve the sub-cellular THz features on un-stained skin tissues showing
a nevus or nevi. With the advancement of THz radiation sources toward
operating in high-power, high-temperature, and broadband regimes
based on semiconductor hetero-structures,441,442 inorganic and organic
crystals,443,444 electron bunch trains,445 graphene hyperbolic grating,446

or topological semimetals nanowires447 we envisage great attention to be
attracted on nano-THz biological studies, including direct characterizing
cellular structures at the nanoscale. To realize unprecedented THz-tissue
response at the cellular or molecular level in liquids,448,449 considering s-
SNOM probing volume is typically restricted by the tip tapping ampli-
tude around several hundred nanometers, a deeper (lm) volumetric
characterization,450 i.e., THz near-field tomography, would be necessary
and insightful when approaching to decipher superficial contribution
from volume-averaged THz responses. This is a premise to empower
direct microscopic characterization of THz-tissue interactions by visual-
izing cell responses in liquid at the nanoscale. If the near-field observa-
tions of nanoscale THz response variations within a single cellular
structure regardless of topological variations could be realized, there
might be an opportunity to answer the cellular-level origin of THz far-
field contrasts on tissues, which might provide vital shreds of evidence
and incentives for prudent decisions on employing THz waves as a stan-
dard medical diagnostic tool for early stage lesions in the future.

G. Metal oxides and defects

For solid-state materials, we find s-SNOM researchers usually
start with well-documented and standard materials. The pioneer THz
s-SNOM studies work with probing spatially varying surface doping in
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metallic nanostructures,79,451 doped semiconductor-based nanostruc-
tures, like silicon91,195,245,267 or gallium arsenide,117,262 vanadium diox-
ide259 and graphene158,243,254 with well-documented dielectric
properties, then progressing at the stage to study materials whose
nanoscale properties with less-documented information at THz fre-
quencies, including phase change materials,209,260 perovskites,263,284

rare-earth metal oxides (Fig. 13),277 carbon black in rubber,452 and
antiferromagnetic thin films with anisotropic conductivity.453

Considering these applications originally rely on the high sensi-
tivity of THz waves to conduction electrons or surface mobility, THz
s-SNOM is considered as a promising candidate to quantify local
changes in the electrical conductivity of metal oxides caused by oxygen
vacancies, which are typically invisible to conventional methods.454

With the spatial resolution of tens of nanometers, THz s-SNOM could
be used to probe electrical properties of oxides, potential insulator-to-
metal transition of oxygen vacancies, and resulting conductivity
changes due to the increase in vacancy concentrations at the nano-
scale,455,456 allowing to potentially unveil the microscopic origin of
near-surface vacancy structure457 and to clarify the role of oxygen
vacancies as well as dopants in high-temperature superconduc-
tors458,459 and in metal-based biodegradable memory alloy460 to
sharpen the microscopic understanding of metal aging, corrosion rates,
and Schottky barrier distribution with in situ THz nanoprobing. The
nondestructive and nanoscale resolving ability of THz s-SNOM allows
for developing the fundamental understanding and optimizing the fab-
rication process of future metal and oxides-based electronics and
implantable biomedical devices.

H. Topological insulators

Topological insulators are a group of exotic materials where
metallic states appear on the surface of what is notionally an

insulator.461 They serve as exotic material platforms to experimentally
study novel transport phenomena, including the anomalous quantum
Hall effect and spin Hall effect observed in topological insulator sys-
tems.462 THz s-SNOM allows for tracking changes of the induced local
electrical properties at the nanoscale during the fabrication of topologi-
cal insulators and reveals the underlying physics of these materials
nondestructively.120 This ability of THz s-SNOM paves the promise to
assist a wide range of application studies including the development of
high-efficiency for thermometric-film wearable electronic devi-
ces,463,464 spintronics,465 quantum computing,466–468 flexible piezoelec-
trics469 and thermoelectrics based on topological insulators.470,471

While THz a-SNOM has been demonstrated as a suitable probe
to study evanescent electromagnetic responses in meta-structures472

based on topological insulator,473 near-field plasmon responses from
topological insulators were found to be more pronounced by using
THz s-SNOM.120,283 This may motivate THz a-SNOM developers to
consider the incorporation of QCL or gas laser; however, switching the
a-SNOM radiation source may also urge the advance of aperture-
based near-field detection technique, where the photoconductive
nano-antenna in a-SNOM probe was originally inspired and designed
for the broadband detection using THz-TDS systems.

We also note that frequencies below 4THz (including microwave
regimes realized by scanning microwave microscopy) are crucial for
studying quantum materials,474–481 including edge and bulk states as
well as other emergent phenomena in topological insulators at the
microscopic level, including imaging quantum Hall edge channels474

and quantifying surface electronic transport (the imaginary part of
SMM signals is a good measure of local resistivity) in gated graphene
devices475 by microwave microscopy. A recent example demonstrated
byWang et al. showcased the SMM advantage to visualize Chern insula-
tors’ one-dimensional chiral (quantum anomalous Hall) edge mode

FIG. 13. Near-field localization of the boson peak, a signature of low-frequency vibrational modes relating to excess vibrational density of states, using THz nanospectroscopy.
The direct microscopic observation of two-level systems as one of the leading loss channels for quantum devices at the operating temperature. Reproduced with permission
from Guo et al., J. Phys. Chem. Lett. 14, 4892–4900. Copyright 2023 American Chemical Society.277
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features manifested experimentally as a sharp microwave response
enhancement at the crystal sample boundaries478 (400� 20 lm2

Cr� doped ðBi; SbÞ2Te3, a typical ternary compound alloy composed
of bismuth, antimony, and tellurium with electrical and magnetic prop-
erties tuned by chromium doping) and edge state conductivity. In the
meantime, the capacity of microwave microscopy with continuous fre-
quency tunability in SMM experiments is expected to shed light on the
non-trivial interpretation of microwave edge responses, considered as
collective edge magnetoplasmon excitations, measured on arbitrary
quantum materials within the SMM theoretical framework proposed by
Wang et al.478 in the future, while similar cases also apply for THz nano-
scopy considering the experimental freedoms coming from multi-
physics coupling, including temperature, magnetic field, etc.

In terms of probing topological insulators, we envision the con-
tinuing co-development of THz cryogenic SNOM with tunability on
temperature, as well as strong magnetic field, provides a bright future
allowing direct experimental observations of transport properties in
both antiferromagnetic and ferromagnetic phases at the nano-
scale.482,483 Similar to the situations encountered in SMM quantum
material studies, future advancements in cryostat setups,484 along with
integration into broadband nanospectroscopy, will advance our under-
standing of topological insulators’ properties479,480 and further expand
our ability to modulate topological electronic phases through intense
THz field excitations.481,485

I. Physics-informed AI for s-SNOM quantitative analysis

Considering the complicated physics nature of the s-SNOM tip-
sample interactions, it might be unrealistic to put all the s-SNOM
experimental details into a model. The questions for quantitative s-
SNOM analysis will be—(1) Will artificial intelligence (AI), e.g.,
machine learning or deep learning algorithms, be helpful for s-SNOM
analysis more than publishing a paper to claim the first attempt? (2)
How much can it involve and contribute to s-SNOM, especially in the
quantitative analysis? Recently, neural networks (NN) as a supervised
learning algorithm have been demonstrated by the quantitative analy-
sis of s-SNOM scattering spectra.183,486,487 However since NN is a
data-driven and data-hungry AI framework, a simple translation on s-
SNOM scattering spectra hampers the practical utility for quantitative
analysis. As a data-driven AI framework, NN suffers from many
intrinsic problems as a data-hungry supervised learning algorithm.
This is due to the fact that good-quality s-SNOM data with a high
signal-to-noise ratio is time-consuming, especially with THz radiation.

No matter how powerful a data-hungry NN is to encode a latent
space, the difficulty will be greater for such supervised learning algo-
rithms, compounded by the fact that the s-SNOM probe tip wears after
long-term usage, which will change the initial “correct label.” Other
approaches to data augmentation, such as generative adversarial net-
works (GAN)488,489 and other physics-informed generative models, e.g.,
inspired by the diffusion process490 or Poisson equation,491 a recent pro-
gressive topic in deep learning, may provide additional insights.

Note that, recently, deep reasoning networks have been demon-
strated in materials science for automated crystal-structure phase
mapping based on prior scientific knowledge.492 Since the multiplica-
tive process describing the s-SNOM probe-sample interactions
shares a highly similar framework to that of a closed loop feedback
control,493 other hybrid frameworks combining detailed reasoning in
tandem with intuitive pattern recognition at more than a qualitative

level494–496 are expected to aid s-SNOM quantitative analysis. To avoid
overfitting data, constructing interpretable neural network architectures
(i.e., white-box methods) with knowledge from the first principle497–499

to capture the complex mapping in s-SNOM scattering process is essen-
tial. With more prior interpretable scientific knowledge on the s-SNOM
probe-sample interactions, a high-efficiency physics-informed frame-
work targeting s-SNOM complex dielectric extraction500,501 could be
implemented to remove system responses and go beyond the quasi-
static limit when only p-polarized components are considered.

On the other hand, it should be noted that even the simplest neu-
ral network architecture, a multilayer perceptron, has been demon-
strated with excellent performances in natural language processing
tasks;502 thus, it is not a bad idea to focus on how to collect promising
raw data while obsessing over developing complicated multipronged
NN architectures for s-SNOM tasks. In 2023, the astonishing perfor-
mance of advanced natural language processing by ChatGPT, a large
language model (LLM), draws a great attention across a broad range of
disciplines to think about AI for science. We envision LLM-assisted
prompt engineering as an end-to-end assistant to facilitate the inter-
pretation and analysis for the observed s-SNOM nanoscale responses
in the future,503,504 for example, providing data analysis pipelines to
start with or offering physics pictures with basic solid state physics
models to interpret spectral responses for educated laymen.

Researchers with interest in the microscopic understanding and
nanoscale responses about material properties would benefit from AI-
assisted analysis, with the domain knowledge input, to expand the
boundary of science. Recently, AI has surprisingly demonstrated
human-level automated reasoning on Olympiad-level Euclidean plane
geometry mathematical theorems, i.e., AlphaGeometry, approaching
the average performance of an International Mathematical Olympiad
(IMO) gold medalist.505 If we were able to translate physics domain
knowledge (for example, theorems in complex analysis and electrody-
namics) into machine-verifiable formats for AI in the future, how will
SNOM practitioners or more broadly, spectroscopists, be re-defined?
What is the irreplaceable task for researchers facing the increasingly
remarkable capabilities of AI, except to act as prompt engineers with
potentially insightful questions?

Finally, an important open question to answer is—how to utilize
the power of AI with s-SNOM quantitative analysis after the peak of
inflated expectations in the Gartner hype cycle?

VI. CONCLUSIONS

Over the past 40 years, the upper limit of resolving sub-
diffraction THz responses has been significantly improved to about
tens of nanometers (�20 nm), which is remarkably shorter (< 1

5000)
than typical THz wavelengths with the establishment of nowadays
THz s-SNOM, surpassing THz a-SNOM. As a THz nanoscopy, THz
s-SNOM simultaneously offers both the topography and spatially vary-
ing THz light-matter interactions of the interrogated sample at the
nanoscale, whereas far-field THz scanners only probe high-spatial-
frequency component light-matter interactions and thus lose fine spa-
tial details. More uniquely, THz s-SNOM offers nanoscale spectro-
scopic features, overcoming far-field THz systems whose THz
responses are averaged over several hundred of micrometers.

Additionally, THz s-SNOM stands out in comparison to other
material characterization tools including scanning electron microscope
(SEM), transmission electron microscopy (TEM), nanoscale secondary
ion mass spectrometry (nano-SIMS), and confocal laser scanning
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microscopy by harnessing the nondestructive and label-free capabili-
ties at the nanoscale. These characteristics enable THz s-SNOM offer-
ing distinctive insights in various application studies, including
semiconductors, 2D materials, quantum materials, artificial nanostruc-
tures, cells, proteins, peptides, bacteria, and other bio-macromolecules.

To date, THz s-SNOM has been contributing to a breadth of
multidisciplinary applications, including characterizing nanoscale con-
ductivity and doping heterogeneity, developing next-generation
advanced manufacturing protocols, characterizing electrical properties
of peptides, and unveiling exotic nature of collective elementary excita-
tion, e.g., surface polaritons, on 2Dmaterials at THz frequencies.

This review aims to highlight THz s-SNOM as a cutting-edge
label-free and nondestructive characterization method for multidisci-
plinary studies (spanning physics, chemistry, materials science and
biology), especially facilitating as a quantitative analysis method to
unveil the microscopic origin of light-matter interaction due to sample
permittivity change at the nanoscale. In the final section of this review,
a few unexplored terrains of THz s-SNOM demanding emergent clari-
fication are summarized, with the road ahead presented in the end.

In summary, THz s-SNOM stands as a luminary amid the fast-
rising stars in the realm of the deep sub-wavelength quantitative imag-
ing and spectroscopy well beyond the diffraction limit. We expect THz
s-SNOM serving as a standard and robust in-line nanoscale characteri-
zation method, like TEM or SEM, but with its nondestructive and
label-free uniqueness on material properties in research laboratories
and even in high-tech manufacturing industries in the future.
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Å spatial resolution light microscope: I. Light is efficiently transmitted
through k/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).

51E. Betzig and R. J. Chichester, “Single molecules observed by near-field scan-
ning optical microscopy,” Science 262, 1422–1425 (1993).

52A. Piednoir, C. Licoppe, and F. Creuzet, “Imaging and local infrared spectros-
copy with a near field optical microscope,” Opt. Commun. 129, 414–422
(1996).

53R. Merz, F. Keilmann, R. Haug, and K. Ploog, “Nonequilibrium edge-state
transport resolved by far-infrared microscopy,” Phys. Rev. Lett. 70, 651
(1993).

54F. Keilmann, “FIR microscopy,” Infrared Phys. Technol. 36, 217–224
(1995).

55S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt.
Commun. 150, 22–26 (1998).

56O. Mitrofanov, I. Brener, M. Wanke, R. Ruel, J. Wynn, A. Bruce, and J.
Federici, “Near-field microscope probe for far infrared time domain measure-
ments,” Appl. Phys. Lett. 77, 591–593 (2000).

57O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J.
Federici, “Terahertz near-field microscopy based on a collection mode detec-
tor,” Appl. Phys. Lett. 77, 3496–3498 (2000).

58O. Mitrofanov, M. Lee, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn,
and J. F. Federici, “Terahertz pulse propagation through small apertures,”
Appl. Phys. Lett. 79, 907–909 (2001).

59O. Mitrofanov, M. Lee, J. W. Hsu, I. Brener, R. Harel, J. F. Federici, J. D.
Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging
with 0.5-THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001).

60B. Gompf and M. Dressel, “THz-micro-spectroscopy,” IEEE J. Sel. Top.
Quantum Electron. 14, 470–475 (2008).

61M. W€achter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field
probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112
(2009).

62S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. J. Dietz, and T. G€obel,
“Photoconductive terahertz near-field detectors for operation with 1550-nm
pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).

63T. Siday, M. Natrella, J. Wu, H. Liu, and O. Mitrofanov, “Resonant terahertz
probes for near-field scattering microscopy,” Opt. Express 25, 27874–27885
(2017).

64H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
65Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a
metallic probe tip,” Opt. Lett. 19, 159–161 (1994).

66R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near field optical microscopy by
local perturbation of a diffraction spot,” Microsc., Microanal., Microstruct. 5,
389–397 (1994).

67R. Bachelot, P. Gleyzes, and A. Boccara, “Reflection-mode scanning near-field
optical microscopy using an apertureless metallic tip,” Appl. Opt. 36, 2160–
2170 (1997).

68F. Zenhausern, Y. Martin, and H. Wickramasinghe, “Scanning interferometric
apertureless microscopy: Optical imaging at 10 angstrom resolution,” Science
269, 1083–1085 (1995).

69B. Knoll and F. Keilmann, “Scanning microscopy by mid-infrared near-field
scattering,” Appl. Phys. A 66, 477–481 (1998).

70B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for
chemical microscopy,” Nature 399, 134 (1999).

71S. Amarie, T. Ganz, and F. Keilmann, “Mid-infrared near-field spectroscopy,”
Opt. Express 17, 21794–21801 (2009).

72F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-
spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10, 352–356
(2011).

73M. C. Giordano, L. Viti, O. Mitrofanov, and M. S. Vitiello, “Phase-sensitive
terahertz imaging using room-temperature near-field nanodetectors,” Optica
5, 651–657 (2018).

74H.-T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer
resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).

75A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand,
“Terahertz near-field nanoscopy of mobile carriers in single semiconductor
nanodevices,” Nano Lett. 8, 3766–3770 (2008).

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021306 (2024); doi: 10.1063/5.0189061 11, 021306-29

VC Author(s) 2024

 24 N
ovem

ber 2024 03:57:31

https://doi.org/10.1088/0953-8984/14/50/203
https://doi.org/10.1515/nanoph-2014-0003
https://doi.org/10.1016/j.pdpdt.2009.07.002
https://doi.org/10.1007/s10762-011-9794-5
https://doi.org/10.1007/s10762-011-9794-5
https://doi.org/10.1016/j.tibtech.2016.04.008
https://doi.org/10.1016/j.pquantelec.2018.10.001
https://doi.org/10.1063/1.5080205
https://doi.org/10.1088/2040-8986/ab4dc3
https://doi.org/10.1117/1.JBO.26.4.043005
https://doi.org/10.1007/s10762-011-9809-2
https://doi.org/10.1039/C9CC00141G
https://doi.org/10.1111/j.1365-2818.1881.tb05909.x
https://doi.org/10.1111/j.1365-2818.1881.tb05909.x
https://doi.org/10.1038/s41566-021-00835-6
https://doi.org/10.1002/lpor.202200029
https://doi.org/10.1109/JMW.2021.3106936
https://doi.org/10.1109/JMW.2021.3106936
https://doi.org/10.1038/s42254-021-00386-3
https://doi.org/10.1080/14786440808564615
https://doi.org/10.1080/14786440808564615
https://doi.org/10.1038/237510a0
https://doi.org/10.1063/1.94865
https://doi.org/10.1103/PhysRevLett.49.57
https://doi.org/10.1016/0039-6028(83)90716-1
https://doi.org/10.1103/PhysRevLett.56.930
https://doi.org/10.1103/PhysRevLett.56.930
https://doi.org/10.1016/0304-3991(84)90201-8
https://doi.org/10.1126/science.262.5138.1422
https://doi.org/10.1016/S0030-4018(96)00174-5
https://doi.org/10.1103/PhysRevLett.70.651
https://doi.org/10.1016/1350-4495(94)00066-T
https://doi.org/10.1016/S0030-4018(98)00044-3
https://doi.org/10.1016/S0030-4018(98)00044-3
https://doi.org/10.1063/1.127054
https://doi.org/10.1063/1.1328772
https://doi.org/10.1063/1.1392303
https://doi.org/10.1109/2944.974231
https://doi.org/10.1109/JSTQE.2007.910560
https://doi.org/10.1109/JSTQE.2007.910560
https://doi.org/10.1063/1.3189702
https://doi.org/10.1109/TTHZ.2016.2549365
https://doi.org/10.1364/OE.25.027874
https://doi.org/10.1103/PhysRev.66.163
https://doi.org/10.1364/OL.19.000159
https://doi.org/10.1051/mmm:0199400504-6038900
https://doi.org/10.1364/AO.36.002160
https://doi.org/10.1126/science.269.5227.1083
https://doi.org/10.1007/s003390050699
https://doi.org/10.1038/20154
https://doi.org/10.1364/OE.17.021794
https://doi.org/10.1038/nmat3006
https://doi.org/10.1364/OPTICA.5.000651
https://doi.org/10.1063/1.1616668
https://doi.org/10.1021/nl802086x
pubs.aip.org/aip/are


76H.-G. von Ribbeck, M. Brehm, D. van der Weide, S. Winnerl, O. Drachenko,
M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt.
Express 16, 3430–3438 (2008).

77F. Kuschewski, H.-G. von Ribbeck, J. D€oring, S. Winnerl, L. Eng, and S. Kehr,
“Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5
THz,” Appl. Phys. Lett. 108, 113102 (2016).

78P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G.
Davies, “Apertureless near-field terahertz imaging using the self-mixing effect
in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).

79X. Chen, X. Liu, X. Guo, S. Chen, H. Hu, E. Nikulina, X. Ye, Z. Yao, H. A.
Bechtel, M. C. Martin et al., “THz near-field imaging of extreme subwave-
length metal structures,” ACS Photonics 7, 687–694 (2020).

80P. Rubino, J. Keeley, N. Sulollari, A. D. Burnett, A. Valavanis, I. Kundu, M. C.
Rosamond, L. Li, E. H. Linfield, A. G. Davies et al., “All-electronic phase-
resolved THz microscopy using the self-mixing effect in a semiconductor
laser,” ACS Photonics 8, 1001–1006 (2021).

81E. A. Pogna, C. Silvestri, L. L. Columbo, M. Brambilla, G. Scamarcio, and M.
S. Vitiello, “Terahertz near-field nanoscopy based on detectorless laser feed-
back interferometry under different feedback regimes,” APL Photonics 6,
061302 (2021).

82K. S. Reichel, E. A. A. Pogna, S. Biasco, L. Viti, A. Di Gaspare, H. E. Beere, D.
A. Ritchie, and M. S. Vitiello, “Self-mixing interferometry and near-field
nanoscopy in quantum cascade random lasers at terahertz frequencies,”
Nanophotonics 10, 1495–1503 (2021).

83B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contrast of micro-
wave near-field microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).

84G. Dai, G. Geng, X. Zhang, J. Wang, T. Chang, and H.-L. Cui, “W-band near-
field microscope,” IEEE Access 7, 48060–48067 (2019).

85J. Lee, C. J. Long, H. Yang, X.-D. Xiang, and I. Takeuchi, “Atomic resolution
imaging at 2.5 GHz using near-field microwave microscopy,” Appl. Phys.
Lett. 97, 183111 (2010).

86F. Keilmann, D. Van der Weide, T. Eickelkamp, R. Merz, and D. St€ockle,
“Extreme sub-wavelength resolution with a scanning radio-frequency trans-
mission microscope,” Opt. Commun. 129, 15–18 (1996).

87A. A. Govyadinov and V. A. Podolskiy, “Metamaterial photonic funnels for sub-
diffraction light compression and propagation,” Phys. Rev. B 73, 155108 (2006).

88T.-J. Huang, H.-H. Tang, L.-Z. Yin, J.-Y. Liu, Y. Tan, and P.-K. Liu,
“Experimental demonstration of an ultra-broadband subwavelength resolu-
tion probe from microwave to terahertz regime,” Opt. Lett. 43, 3646–3649
(2018).

89J. Wessel, “Surface-enhanced optical microscopy,” J. Opt. Soc. Am. B 2, 1538–
1541 (1985).

90H. K. Wickramasinghe and C. C. Williams, “Apertureless near field optical
microscope,” U.S. patent 4,947,034 (28 April 1989).

91B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelec-
tronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).

92M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba,
M. S. Vitiello, and R. Huber, “Ultrafast multi-terahertz nano-spectroscopy
with sub-cycle temporal resolution,” Nat. Photonics 8, 841 (2014).

93G. C. Cho, H.-T. Chen, S. Kraatz, N. Karpowicz, and R. Kersting,
“Apertureless terahertz near-field microscopy,” Semicond. Sci. Technol. 20,
S286 (2005).

94F. Buersgens, R. Kersting, and H.-T. Chen, “Terahertz microscopy of charge
carriers in semiconductors,” Appl. Phys. Lett. 88, 112115 (2006).

95K. Moon, E. Jung, M. Lim, Y. Do, and H. Han, “Terahertz near-field micro-
scope: Analysis and measurements of scattering signals,” IEEE Trans.
Terahertz Sci. Technol. 1, 164–168 (2011).

96K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K.-S. Park, and H. Han,
“Quantitative coherent scattering spectra in apertureless terahertz pulse near-
field microscopes,” Appl. Phys. Lett. 101, 011109 (2012).

97K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, and H. Han,
“Subsurface nanoimaging by broadband terahertz pulse near-field micros-
copy,” Nano Lett. 15, 549–552 (2015).

98P. Klarskov, H. Kim, V. L. Colvin, and D. M. Mittleman, “Nanoscale laser ter-
ahertz emission microscopy,” ACS Photonics 4, 2676–2680 (2017).

99M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti,
A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F.

Keilmann, G. Scamarcio, and M. S. Vitiello, “Phase-resolved terahertz self-
detection near-field microscopy,” Opt. Express 26, 18423–18435 (2018).

100C. Liewald, S. Mastel, J. Hesler, A. J. Huber, R. Hillenbrand, and F. Keilmann,
“All-electronic terahertz nanoscopy,” Optica 5, 159–163 (2018).

101Z. Yao, V. Semenenko, J. Zhang, S. Mills, X. Zhao, X. Chen, H. Hu, R. Mescall,
T. Ciavatti, S. March, S. R. Bank, T. H. Tao, X. Zhang, V. Perebeinos, Q. Dai,
X. Du, and M. Liu, “Photo-induced terahertz near-field dynamics of graphene/
InAs heterostructures,” Opt. Express 27, 13611–13623 (2019).

102A. Pizzuto, D. M. Mittleman, and P. Klarskov, “Laser THz emission nanoscopy
and THz nanoscopy,” Opt. Express 28, 18778–18789 (2020).

103E. A. Pogna, M. Asgari, V. Zannier, L. Sorba, L. Viti, and M. S. Vitiello,
“Unveiling the detection dynamics of semiconductor nanowire photodetectors
by terahertz near-field nanoscopy,” Light: Sci. Appl. 9, 189 (2020).

104X. Jin, M. Farina, X. Wang, G. Fabi, X. Cheng, and J. C. Hwang, “Quantitative
scanningmicrowave microscopy of the evolution of a live biological cell in a physi-
ological buffer,” IEEE Trans. Microwave Theory Tech. 67, 5438–5445 (2019).

105M. Farina, X. Jin, G. Fabi, E. Pavoni, A. Di Donato, D. Mencarelli, A. Morini,
F. Piacenza, R. Al Hadi, Y. Zhao, Y. Ning, T. Pietrangelo, X. Cheng, and J. C.
M. Hwang, “Inverted scanning microwave microscope for in vitro imaging
and characterization of biological cells,” Appl. Phys. Lett. 114, 093703 (2019).

106A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, “Infrared-reflection-
mode near-field microscopy using an apertureless probe with a resolution of
k/600,” Opt. Lett. 21, 1315–1317 (1996).

107N. J. J. van Hoof, S. E. T. ter Huurne, J. G. Rivas, and A. Halpin, “Time-
resolved terahertz time-domain near-field microscopy,” Opt. Express 26,
32118–32129 (2018).

108N. Van der Valk and P. Planken, “Electro-optic detection of subwavelength
terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–
1560 (2002).

109V. Pistore, E. A. A. Pogna, L. Viti, L. Li, A. G. Davies, E. H. Linfield, and M. S.
Vitiello, “Self-induced phase locking of terahertz frequency combs in a phase-
sensitive hyperspectral near-field nanoscope,” Adv. Sci. 9, 2200410 (2022).

110F. Qiu, G. You, Z. Tan, W. Wan, C. Wang, X. Liu, X. Chen, R. Liu, H. Tao, Z.
Fu et al., “A terahertz near-field nanoscopy revealing edge fringes with a fast
and highly sensitive quantum-well photodetector,” Iscience 25, 104637 (2022).

111O. Khatib, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. L. Carr, “Far
infrared synchrotron near-field nanoimaging and nanospectroscopy,” ACS
Photonics 5, 2773–2779 (2018).

112S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C.
Paoloni, M. Gensch, P. Weightman, G. Williams et al., “The 2017 terahertz sci-
ence and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).

113R. Lewis, “A review of terahertz detectors,” J. Phys. D: Appl. Phys. 52, 433001
(2019).

114A. Raki�c, T. Taimre, K. Bertling, Y. Lim, P. Dean, A. Valavanis, and D. Indjin,
“Sensing and imaging using laser feedback interferometry with quantum cas-
cade lasers,” Appl. Phys. Rev. 6, 021320 (2019).

115M. S. Vitiello and A. Tredicucci, “Physics and technology of terahertz quantum
cascade lasers,” Adv. Phys.: X 6, 1893809 (2021).

116P. Dean, J. Keeley, Y. L. Lim, K. Bertling, T. Taimre, P. Rubino, D. Indjin, and
A. Raki�c, “Self-mixing in quantum cascade lasers: Theory and applications,” in
Mid-Infrared and Terahertz Quantum Cascade Lasers (Cambridge University
Press, 2023), p. 477–508.

117A. Pizzuto, E. Castro-Camus, W. Wilson, W. Choi, X. Li, and D. M. Mittleman,
“Nonlocal time-resolved terahertz spectroscopy in the near field,” ACS
Photonics 8, 2904–2911 (2021).

118A. Pizzuto, P. Ma, and D. M. Mittleman, “Near-field terahertz nonlinear optics
with blue light,” Light: Sci. Appl. 12, 96 (2023).

119J. Cai, M. Dai, S. Chen, P. Chen, J. Wang, H. Xiong, Z. Ren, S. Liu, Z. Liu, C.
Wan et al., “Terahertz spin currents resolved with nanometer spatial resolu-
tion,” Appl. Phys. Rev. 10, 041414 (2023).

120E. A. A. Pogna, L. Viti, A. Politano, M. Brambilla, G. Scamarcio, and M. S.
Vitiello, “Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8
topological insulators by near-field terahertz nanoscopy,” Nat. Commun. 12,
6672 (2021).

121A. Bitzer, A. Ortner, and M. Walther, “Terahertz near-field microscopy with
subwavelength spatial resolution based on photoconductive antennas,” Appl.
Opt. 49, E1–E6 (2010).

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021306 (2024); doi: 10.1063/5.0189061 11, 021306-30

VC Author(s) 2024

 24 N
ovem

ber 2024 03:57:31

https://doi.org/10.1364/OE.16.003430
https://doi.org/10.1364/OE.16.003430
https://doi.org/10.1063/1.4943793
https://doi.org/10.1063/1.4943088
https://doi.org/10.1021/acsphotonics.9b01534
https://doi.org/10.1021/acsphotonics.0c01908
https://doi.org/10.1063/5.0048099
https://doi.org/10.1515/nanoph-2020-0609
https://doi.org/10.1063/1.119255
https://doi.org/10.1109/ACCESS.2019.2907742
https://doi.org/10.1063/1.3514243
https://doi.org/10.1063/1.3514243
https://doi.org/10.1016/0030-4018(96)00108-3
https://doi.org/10.1103/PhysRevB.73.155108
https://doi.org/10.1364/OL.43.003646
https://doi.org/10.1364/JOSAB.2.001538
https://doi.org/10.1063/1.1330756
https://doi.org/10.1038/nphoton.2014.225
https://doi.org/10.1088/0268-1242/20/7/020
https://doi.org/10.1063/1.2186743
https://doi.org/10.1109/TTHZ.2011.2159876
https://doi.org/10.1109/TTHZ.2011.2159876
https://doi.org/10.1063/1.4733475
https://doi.org/10.1021/nl503998v
https://doi.org/10.1021/acsphotonics.7b00870
https://doi.org/10.1364/OE.26.018423
https://doi.org/10.1364/OPTICA.5.000159
https://doi.org/10.1364/OE.27.013611
https://doi.org/10.1364/OE.382130
https://doi.org/10.1038/s41377-020-00425-1
https://doi.org/10.1109/TMTT.2019.2941850
https://doi.org/10.1063/1.5086259
https://doi.org/10.1364/OL.21.001315
https://doi.org/10.1364/OE.26.032118
https://doi.org/10.1063/1.1503404
https://doi.org/10.1002/advs.202200410
https://doi.org/10.1016/j.isci.2022.104637
https://doi.org/10.1021/acsphotonics.8b00565
https://doi.org/10.1021/acsphotonics.8b00565
https://doi.org/10.1088/1361-6463/50/4/043001
https://doi.org/10.1088/1361-6463/ab31d5
https://doi.org/10.1063/1.5094674
https://doi.org/10.1080/23746149.2021.1893809
https://doi.org/10.1021/acsphotonics.1c01367
https://doi.org/10.1021/acsphotonics.1c01367
https://doi.org/10.1038/s41377-023-01137-y
https://doi.org/10.1063/5.0170207
https://doi.org/10.1038/s41467-021-26831-6
https://doi.org/10.1364/AO.49.0000E1
https://doi.org/10.1364/AO.49.0000E1
pubs.aip.org/aip/are


122A. Khalatpour, A. K. Paulsen, C. Deimert, Z. R. Wasilewski, and Q. Hu,
“High-power portable terahertz laser systems,” Nat. Photonics 15, 16–20
(2021).

123X. Qi, G. Agnew, I. Kundu, T. Taimre, Y. L. Lim, K. Bertling, P. Dean, A.
Grier, A. Valavanis, E. H. Linfield et al., “Multi-spectral terahertz sensing:
Proposal for a coupled-cavity quantum cascade laser based optical feedback
interferometer,” Opt. Express 25, 10153–10165 (2017).

124X. Qi, G. Agnew, T. Taimre, S. Han, Y. L. Lim, K. Bertling, A. Demi�c, P. Dean,
D. Indjin, and A. D. Raki�c, “Laser feedback interferometry in multi-mode tera-
hertz quantum cascade lasers,” Opt. Express 28, 14246–14262 (2020).

125C. Silvestri, X. Qi, T. Taimre, and A. D. Raki�c, “Multimode dynamics of tera-
hertz quantum cascade lasers: Spontaneous and actively induced generation of
dense and harmonic coherent regimes,” Phys. Rev. A 106, 053526 (2022).

126E. Riccardi, V. Pistore, S. Kang, L. Seitner, A. De Vetter, C. Jirauschek, J.
Mangeney, L. Li, A. G. Davies, E. H. Linfield et al., “Short pulse generation
from a graphene-coupled passively mode-locked terahertz laser,” Nat.
Photonics 17, 607–614 (2023).

127C. Silvestri, X. Qi, T. Taimre, K. Bertling, and A. D. Raki�c, “Frequency combs
in quantum cascade lasers: An overview of modeling and experiments,” APL
Photonics 8, 020902 (2023).

128C. Silvestri, X. Qi, T. Taimre, and A. D. Raki�c, “Frequency combs induced by
optical feedback and harmonic order tunability in quantum cascade lasers,”
APL Photonics 8, 116102 (2023).

129C. Silvestri, X. Qi, T. Taimre, and A. D. Raki�c, “Harmonic active mode locking
in terahertz quantum cascade lasers,” Phys. Rev. A 108, 013501 (2023).

130X. Guo, K. Bertling, and A. D. Raki�c, “Optical constants from scattering-type
scanning near-field optical microscope,” Appl. Phys. Lett. 118, 041103 (2021).

131C. Silvestri, L. L. Columbo, and M. Brambilla, “Retrieval of the dielectric prop-
erties of a resonant material in the terahertz region via self-detection near field
optical microscopy,” IEEE J. Sel. Top. Quantum Electron. 29, 8600211 (2023).

132X. Guo, X. He, Z. Degnan, C.-C. Chiu, B. C. Donose, K. Bertling, A. Fedorov,
A. D. Raki�c, and P. Jacobson, “Terahertz nanospectroscopy of plasmon polari-
tons for the evaluation of doping in quantum devices,” Nanophotonics 12,
1865–1875 (2023).

133F. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam,
M. Amanti, C. Sirtori, S. Moumdji et al., “Short terahertz pulse generation
from a dispersion compensated modelocked semiconductor laser,” Laser
Photonics Rev. 11, 1700013 (2017).

134L. Seitner, J. Popp, M. Haider, S. S. Dhillon, M. S. Vitiello, and C. Jirauschek,
“Theoretical model of passive mode-locking in terahertz quantum cascade lasers
with distributed saturable absorbers,” Nanophotonics (published online 2024).

135T. Taimre, M. Nikoli�c, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Raki�c, “Laser
feedback interferometry: A tutorial on the self-mixing effect for coherent sens-
ing,” Adv. Opt. Photonics 7, 570–631 (2015).

136K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. H€ofling, R.
Weih, M. Kamp, M. von Edlinger et al., “Simple electrical modulation scheme
for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2015).

137Y. L. Lim, K. Bertling, T. Taimre, T. Gillespie, C. Glenn, A. Robinson, D.
Indjin, Y. Han, L. Li, E. H. Linfield et al., “Coherent imaging using laser feed-
back interferometry with pulsed-mode terahertz quantum cascade lasers,” Opt.
Express 27, 10221–10233 (2019).

138M. S. Vitiello, “Near-field quantum nanoscopy in the far-infrared enabled by
quantum cascade lasers: Opinion,” Opt. Mater. Express 13, 3045–3050 (2023).

139D. Mohun, N. Sulollari, M. Salih, L. H. Li, J. E. Cunningham, E. H. Linfield, A.
G. Davies, and P. Dean, “Terahertz microscopy using laser feedback interfer-
ometry based on a generalised phase-stepping algorithm,” Sci. Rep. 14, 3274
(2024).

140L. Wehmeier, M. Liu, S. Park, H. Jang, D. Basov, C. C. Homes, and G. L. Carr,
“Ultrabroadband terahertz near-field nanospectroscopy with a HgCdTe detec-
tor,” ACS Photonics 10, 4329–4339 (2023).

141S.-S. Tuca, G. Badino, G. Gramse, E. Brinciotti, M. Kasper, Y. J. Oh, R. Zhu, C.
Rankl, P. Hinterdorfer, and F. Kienberger, “Calibrated complex impedance of
CHO cells and E. coli bacteria at GHz frequencies using scanning microwave
microscopy,” Nanotechnology 27, 135702 (2016).

142M. Farina and J. C. Hwang, “Scanning microwave microscopy for biological
applications: Introducing the state of the art and inverted SMM,” IEEE
Microwave Mag. 21, 52–59 (2020).

143G. Fabi, C. Joseph, E. Pavoni, X. Wang, R. Al Hadi, J. C. Hwang, A. Morini,
and M. Farina, “Real-time removal of topographic artifacts in scanning micro-
wave microscopy,” IEEE Trans. Microwave Theory Tech. 69, 2662–2672
(2021).

144S. A. Azman, G. Fabi, E. Pavoni, C. Joseph, N. Pini, T. Pietrangelo, L.
Pierantoni, A. Morini, D. Mencarelli, A. Di Donato et al., “Inverted scanning
microwave microscopy of a vital mitochondrion in liquid,” IEEE Microwave
Wireless Compon. Lett. 32, 804–806 (2022).

145A. D. Raki�c, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikoni�c, P.
Harrison, A. Valavanis, S. P. Khanna et al., “Swept-frequency feedback inter-
ferometry using terahertz frequency QCLs: A method for imaging and materi-
als analysis,” Opt. Express 21, 22194–22205 (2013).

146J. Keeley, P. Dean, A. Valavanis, K. Bertling, Y. Lim, R. Alhathlool, T. Taimre,
L. Li, D. Indjin, A. Raki�c et al., “Three-dimensional terahertz imaging using
swept-frequency feedback interferometry with a quantum cascade laser,” Opt.
Lett. 40, 994–997 (2015).

147N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for
background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).

148M. Schnell, P. S. Carney, and R. Hillenbrand, “Synthetic optical holography for
rapid nanoimaging,” Nat. Commun. 5, 3499 (2014).

149Y. Sasaki and H. Sasaki, “Heterodyne detection for the extraction of the probe-
scattering signal in scattering-type scanning near-field optical microscope,”
Jpn. J. Appl. Phys. 39, L321 (2000).

150R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwave-
length scale,” Phys. Rev. Lett. 85, 3029 (2000).

151T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and
mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210,
311–314 (2003).

152I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P.
Royer, “Heterodyne detection of guided waves using a scattering-type scanning
near-field optical microscope,” Opt. Express 13, 5553–5564 (2005).

153A. J. Sternbach, J. Hinton, T. Slusar, A. S. McLeod, M. Liu, A. Frenzel, M.
Wagner, R. Iraheta, F. Keilmann, A. Leitenstorfer et al., “Artifact free time
resolved near-field spectroscopy,” Opt. Express 25, 28589–28611 (2017).

154H. Wang, L. Wang, and X. G. Xu, “Scattering-type scanning near-field optical
microscopy with low-repetition-rate pulsed light source through phase-
domain sampling,” Nat. Commun. 7, 13212 (2016).

155S. Palato, P. Schwendke, N. B. Grosse, and J. St€ahler, “Pseudoheterodyne near-
field imaging at kHz repetition rates via quadrature-assisted discrete demodu-
lation,” Appl. Phys. Lett. 120, 131601 (2022).

156J. Neu and C. A. Schmuttenmaer, “Tutorial: An introduction to terahertz time
domain spectroscopy (THz-TDS),” J. Appl. Phys. 124, 231101 (2018).

157M. Koch, D. M. Mittleman, J. Ornik, and E. Castro-Camus, “Terahertz time-
domain spectroscopy,” Nat. Rev. Methods Primers 3, 49 (2023).

158N. A. Aghamiri, F. Huth, A. J. Huber, A. Fali, R. Hillenbrand, and Y. Abate,
“Hyperspectral time-domain terahertz nano-imaging,” Opt. Express 27,
24231–24242 (2019).

159R. Jing, R. A. Vitalone, S. Xu, C. F. B. Lo, Z. Fei, E. Runburg, Y. Shao, X. Chen,
F. Mooshammer, A. S. Mcleod, M. Liu, M. M. Fogler, D. H. Cobden, X. Xu,
and D. N. Basov, “Phase-resolved terahertz nanoimaging of WTe2 microcrys-
tals,” Phys. Rev. B 107, 155413 (2023).

160G. Dai, Z. Yang, G. Geng, M. Li, T. Chang, D. Wei, C. Du, H.-L. Cui, and H.
Wang, “Signal detection techniques for scattering-type scanning near-field
optical microscopy,” Appl. Spectrosc. Rev. 53, 806–835 (2018).

161J. M. Larson, H. A. Bechtel, and R. Kostecki, “Detection and signal processing
for near-field nanoscale Fourier transform infrared spectroscopy,”
arXiv:2303.10329 (2023).

162S. Mastel, M. B. Lundeberg, P. Alonso-Gonz�alez, Y. Gao, K. Watanabe, T.
Taniguchi, J. Hone, F. H. L. Koppens, A. Y. Nikitin, and R. Hillenbrand,
“Terahertz nanofocusing with cantilevered terahertz-resonant antenna tips,”
Nano Lett. 17, 6526–6533 (2017).

163X. Zhou, X. Guo, A. Shkurinov, and Y. Zhu, “Concentric-ring-grating-induced
strong terahertz near-field enhancement on a micro-tip,” J. Opt. 21, 105005
(2019).

164C. Maissen, S. Chen, E. Nikulina, A. Govyadinov, and R. Hillenbrand, “Probes
for ultra-sensitive THz nanoscopy,” ACS Photonics 6, 1279–1288 (2019).

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021306 (2024); doi: 10.1063/5.0189061 11, 021306-31

VC Author(s) 2024

 24 N
ovem

ber 2024 03:57:31

https://doi.org/10.1038/s41566-020-00707-5
https://doi.org/10.1364/OE.25.010153
https://doi.org/10.1364/OE.390433
https://doi.org/10.1103/PhysRevA.106.053526
https://doi.org/10.1038/s41566-023-01195-z
https://doi.org/10.1038/s41566-023-01195-z
https://doi.org/10.1063/5.0134539
https://doi.org/10.1063/5.0134539
https://doi.org/10.1063/5.0164597
https://doi.org/10.1103/PhysRevA.108.013501
https://doi.org/10.1063/5.0036872
https://doi.org/10.1109/JSTQE.2023.3287041
https://doi.org/10.1515/nanoph-2023-0064
https://doi.org/10.1002/lpor.201700013
https://doi.org/10.1002/lpor.201700013
https://doi.org/10.1515/nanoph-2023-0657
https://doi.org/10.1364/AOP.7.000570
https://doi.org/10.1109/JSEN.2015.2507184
https://doi.org/10.1364/OE.27.010221
https://doi.org/10.1364/OE.27.010221
https://doi.org/10.1364/OME.504097
https://doi.org/10.1038/s41598-024-53448-8
https://doi.org/10.1021/acsphotonics.3c01148
https://doi.org/10.1088/0957-4484/27/13/135702
https://doi.org/10.1109/MMM.2020.3008239
https://doi.org/10.1109/MMM.2020.3008239
https://doi.org/10.1109/TMTT.2021.3060756
https://doi.org/10.1109/LMWC.2022.3160694
https://doi.org/10.1109/LMWC.2022.3160694
https://doi.org/10.1364/OE.21.022194
https://doi.org/10.1364/OL.40.000994
https://doi.org/10.1364/OL.40.000994
https://doi.org/10.1063/1.2348781
https://doi.org/10.1038/ncomms4499
https://doi.org/10.1143/JJAP.39.L321
https://doi.org/10.1103/PhysRevLett.85.3029
https://doi.org/10.1046/j.1365-2818.2003.01164.x
https://doi.org/10.1364/OPEX.13.005553
https://doi.org/10.1364/OE.25.028589
https://doi.org/10.1038/ncomms13212
https://doi.org/10.1063/5.0087187
https://doi.org/10.1063/1.5047659
https://doi.org/10.1038/s43586-023-00242-x
https://doi.org/10.1364/OE.27.024231
https://doi.org/10.1103/PhysRevB.107.155413
https://doi.org/10.1080/05704928.2018.1443275
http://arxiv.org/abs/2303.10329
https://doi.org/10.1021/acs.nanolett.7b01924
https://doi.org/10.1088/2040-8986/ab3d7e
https://doi.org/10.1021/acsphotonics.9b00324
pubs.aip.org/aip/are


165T. Siday, L. L. Hale, R. I. Hermans, and O. Mitrofanov, “Resonance-enhanced
terahertz nanoscopy probes,” ACS Photonics 7, 596–601 (2020).

166R. Ren, X. Chen, and M. Liu, “High-efficiency scattering probe design for s-
polarized near-field microscopy,” Appl. Phys. Express 14, 022002 (2021).

167F. Mooshammer, M. Plankl, T. Siday, M. Zizlsperger, F. Sandner, R. Vitalone,
R. Jing, M. A. Huber, D. Basov, and R. Huber, “Quantitative terahertz emission
nanoscopy with multiresonant near-field probes,” Opt. Lett. 46, 3572–3575
(2021).

168Y. Zhang, X. Chen, D. Chen, Z. Yao, S. Xu, P. McArdle, M. M. Qazilbash, and
M. Liu, “Partially metal-coated tips for near-field nanospectroscopy,” Phys.
Rev. Appl. 15, 014048 (2021).

169L. Wehmeier, T. N€orenberg, T. V. de Oliveira, J. M. Klopf, S.-Y. Yang, L. W.
Martin, R. Ramesh, L. M. Eng, and S. C. Kehr, “Phonon-induced near-field
resonances in multiferroic BiFeO3 thin films at infrared and THz wave-
lengths,” Appl. Phys. Lett. 116, 071103 (2020).

170M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy:
Tip–sample coupling in elastic light scattering,” Appl. Phys. Lett. 83, 5089–
5091 (2003).

171W. Denk and D. W. Pohl, “Near-field optics: Microscopy with nanometer-size
fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991).

172L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-
field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).

173O. J. Martin and C. Girard, “Controlling and tuning strong optical field gra-
dients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707
(1997).

174Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, “Strength of the elec-
tric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89,
5774–5778 (2001).

175N. Calander and M. Willander, “Theory of surface-plasmon resonance
optical-field enhancement at prolate spheroids,” J. Appl. Phys. 92, 4878–4884
(2002).

176N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe
tips: Plasmonic light scattering, tip- sample coupling, and near-field enhance-
ment,” J. Phys. Chem. C 112, 3766–3773 (2008).

177P. Aravind and H. Metiu, “The effects of the interaction between resonances in
the electromagnetic response of a sphere-plane structure; applications to sur-
face enhanced spectroscopy,” Surf. Sci. 124, 506–528 (1983).

178G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with
metal surfaces,” Phys. Rep. 113, 195–287 (1984).

179B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type
scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).

180A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative
prediction of material contrasts in scattering-type near-field optical micros-
copy,” Opt. Express 15, 8550–8565 (2007).

181N. Oceli�c, “Quantitative near-field phonon-polariton spectroscopy,” Ph.D. the-
sis (Technische Universit€at M€unchen, 2007).

182K. Wang, D. M. Mittleman, N. C. van der Valk, and P. C. Planken, “Antenna
effects in terahertz apertureless near-field optical microscopy,” Appl. Phys.
Lett. 85, 2715–2717 (2004).

183X. Chen, Z. Yao, S. Xu, A. S. McLeod, S. N. Gilbert Corder, Y. Zhao, M.
Tsuneto, H. A. Bechtel, M. C. Martin, G. L. Carr, M. M. Fogler, S. G. Stanciu,
D. N. Basov, and M. Liu, “Hybrid machine learning for scanning near-field
optical spectroscopy,” ACS Photonics 8, 2987–2996 (2021).

184S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon reso-
nance in scattering-type near-field microscopy,” Phys. Rev. B 83, 045404
(2011).

185X. Chen, J. Zhang, Z. Yao, H. A. Bechtel, M. C. Martin, G. Carr, and M. Liu,
“Ultrabroadband infrared near-field spectroscopy and imaging of local resona-
tors in percolative gold films,” J. Opt. Soc. Am. B 36, 3315–3321 (2019).

186L. Jung, J. Pries, T. W. Maß, M. Lewin, D. S. Boyuk, A. T. Mohabir, M. A.
Filler, M. Wuttig, and T. Taubner, “Quantification of carrier density gradients
along axially-doped silicon nanowires using infrared nanoscopy,” ACS
Photonics 6, 1744–1754 (2019).

187A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand,
“Quantitative measurement of local infrared absorption and dielectric function
with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett. 4, 1526–1531
(2013).

188A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R.
Hillenbrand, “Recovery of permittivity and depth from near-field data as a
step toward infrared nanotomography,” ACS Nano 8, 6911–6921 (2014).

189A. S. McLeod, P. Kelly, M. Goldflam, Z. Gainsforth, A. J. Westphal, G.
Dominguez, M. H. Thiemens, M. M. Fogler, and D. Basov, “Model for quanti-
tative tip-enhanced spectroscopy and the extraction of nanoscale-resolved
optical constants,” Phys. Rev. B 90, 085136 (2014).

190F. Mooshammer, F. Sandner, M. A. Huber, M. Zizlsperger, H. Weigand, M.
Plankl, C. Weyrich, M. Lanius, J. Kampmeier, G. Mussler, D. Gr€utzmacher, J.
L. Boland, T. L. Cocker, and R. Huber, “Nanoscale near-field tomography of
surface states on (Bi0.5Sb0.5)2Te3,” Nano Lett. 18, 7515–7523 (2018).

191D. E. Tranca, S. G. Stanciu, R. Hristu, B. M. Witgen, and G. A. Stanciu,
“Nanoscale mapping of refractive index by using scattering-type scanning
near-field optical microscopy,” Nanomed. Nanotechnol. Biol. Med. 14, 47–50
(2018).

192K. Moon, Y. Do, H. Park, J. Kim, H. Kang, G. Lee, J.-H. Lim, J.-W. Kim, and
H. Han, “Computed terahertz near-field mapping of molecular resonances of
lactose stereo-isomer impurities with sub-attomole sensitivity,” Sci. Rep. 9,
16915 (2019).

193S. G. Stanciu, D. E. Tranca, L. Pastorino, S. Boi, Y. M. Song, Y. J. Yoo, S. Ishii,
R. Hristu, F. Yang, G. Bussetti, and G. A. Stanciu, “Characterization of nano-
materials by locally determining their complex permittivity with scattering-
type scanning near field optical microscopy,” ACS Appl. Nano Mater. 3, 1250–
1262 (2020).

194F. L. Ruta, A. J. Sternbach, A. B. Dieng, A. S. McLeod, and D. N. Basov,
“Quantitative nano-infrared spectroscopy of anisotropic van der Waals materi-
als,” Nano Lett. 20, 7933–7940 (2020).

195X. Guo, X. He, Z. Degnan, B. C. Donose, K. Bertling, A. Fedorov, A. D. Raki�c,
and P. Jacobson, “Near-field terahertz nanoscopy of coplanar microwave reso-
nators,” Appl. Phys. Lett. 119, 091101 (2021).

196A. Solemanifar, X. Guo, B. C. Donose, K. Bertling, B. Laycock, and A. D.
Raki�c, “Probing peptide nanowire conductivity by THz nanoscopy,”
Nanotechnology 33, 065503 (2021).

197K. Moon, E. Jung, M. Lim, Y. Do, and H. Han, “Quantitative analysis and mea-
surements of near-field interactions in terahertz microscopes,” Opt. Express
19, 11539–11544 (2011).

198S. Chui, X. Chen, M. Liu, Z. Lin, and J. Zi, “Scattering of electromagnetic waves
from a cone with conformal mapping: Application to scanning near-field opti-
cal microscope,” Phys. Rev. B 97, 081406 (2018).

199B. Hauer, A. P. Engelhardt, and T. Taubner, “Quasi-analytical model for scat-
tering infrared near-field microscopy on layered systems,” Opt. Express 20,
13173–13188 (2012).

200L. M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M.
Thiemens, A. Castro-Neto, D. Basov, and M. M. Fogler, “Near-field spectros-
copy of silicon dioxide thin films,” Phys. Rev. B 85, 075419 (2012).

201D. E. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, S. Tofail, and G. A. Stanciu,
“High-resolution quantitative determination of dielectric function by using
scattering scanning near-field optical microscopy,” Sci. Rep. 5, 11876 (2015).

202B.-Y. Jiang, L. Zhang, A. Castro Neto, D. Basov, and M. Fogler, “Generalized
spectral method for near-field optical microscopy,” J. Appl. Phys. 119, 054305
(2016).

203Y. Moon, H. Lee, J. Lim, G. Lee, J. Kim, and H. Han, “Reference-free self-
calibrating tip-based scattering-type THz near-field microscopy,” AIP Adv.
13, 065211 (2023).

204M. Khavronin and D. Svintsov, “Signatures of nonlocal electrical conductivity
in near-field microscopy,” Phys. Rev. B 107, 205409 (2023).

205P. McArdle, D. Lahneman, A. Biswas, F. Keilmann, and M. Qazilbash, “Near-
field infrared nanospectroscopy of surface phonon-polariton resonances,”
Phys. Rev. Res. 2, 023272 (2020).

206A. D. Raki�c, A. B. Djuri�si�c, J. M. Elazar, and M. L. Majewski, “Optical proper-
ties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37,
5271–5283 (1998).

207E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998),
Vol. 3.

208A. Fali, S. Gamage, M. Howard, T. G. Folland, N. A. Mahadik, T. Tiwald, K.
Bolotin, J. D. Caldwell, and Y. Abate, “Nanoscale spectroscopy of dielectric
properties of mica,” ACS Photonics 8, 175–181 (2020).

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021306 (2024); doi: 10.1063/5.0189061 11, 021306-32

VC Author(s) 2024

 24 N
ovem

ber 2024 03:57:31

https://doi.org/10.1021/acsphotonics.9b01766
https://doi.org/10.35848/1882-0786/abd716
https://doi.org/10.1364/OL.430400
https://doi.org/10.1103/PhysRevApplied.15.014048
https://doi.org/10.1103/PhysRevApplied.15.014048
https://doi.org/10.1063/1.5133116
https://doi.org/10.1063/1.1632023
https://doi.org/10.1116/1.585558
https://doi.org/10.1016/0304-3991(95)00095-X
https://doi.org/10.1063/1.118245
https://doi.org/10.1063/1.1354655
https://doi.org/10.1063/1.1512315
https://doi.org/10.1021/jp7098009
https://doi.org/10.1016/0039-6028(83)90806-3
https://doi.org/10.1016/0370-1573(84)90098-X
https://doi.org/10.1016/S0030-4018(00)00826-9
https://doi.org/10.1364/OE.15.008550
https://doi.org/10.1063/1.1797554
https://doi.org/10.1063/1.1797554
https://doi.org/10.1021/acsphotonics.1c00915
https://doi.org/10.1103/PhysRevB.83.045404
https://doi.org/10.1364/JOSAB.36.003315
https://doi.org/10.1021/acsphotonics.9b00466
https://doi.org/10.1021/acsphotonics.9b00466
https://doi.org/10.1021/jz400453r
https://doi.org/10.1021/nn5016314
https://doi.org/10.1103/PhysRevB.90.085136
https://doi.org/10.1021/acs.nanolett.8b03008
https://doi.org/10.1016/j.nano.2017.08.016
https://doi.org/10.1038/s41598-019-53366-0
https://doi.org/10.1021/acsanm.9b02019
https://doi.org/10.1021/acs.nanolett.0c02671
https://doi.org/10.1063/5.0061078
https://doi.org/10.1088/1361-6528/ac34a6
https://doi.org/10.1364/OE.19.011539
https://doi.org/10.1103/PhysRevB.97.081406
https://doi.org/10.1364/OE.20.013173
https://doi.org/10.1103/PhysRevB.85.075419
https://doi.org/10.1038/srep11876
https://doi.org/10.1063/1.4941343
https://doi.org/10.1063/5.0152141
https://doi.org/10.1103/PhysRevB.107.205409
https://doi.org/10.1103/PhysRevResearch.2.023272
https://doi.org/10.1364/AO.37.005271
https://doi.org/10.1021/acsphotonics.0c00951
pubs.aip.org/aip/are


209C. Chen, S. Chen, R. P. Lobo, C. Maciel-Escudero, M. Lewin, T. Taubner, W.
Xiong, M. Xu, X. Zhang, X. Miao et al., “Terahertz nanoimaging and nano-
spectroscopy of chalcogenide phase-change materials,” ACS Photonics 7,
3499–3506 (2020).

210X. Chen and E. Pickwell-MacPherson, “An introduction to terahertz time-
domain spectroscopic ellipsometry,” APL Photonics 7, 071101 (2022).

211K. Lai, W. Kundhikanjana, H. Peng, Y. Cui, M. Kelly, and Z. Shen, “Tapping
mode microwave impedance microscopy,” Rev. Sci. Instrum. 80, 043707
(2009).

212H. Huber, M. Moertelmaier, T. Wallis, C. Chiang, M. Hochleitner, A. Imtiaz,
Y. Oh, K. Schilcher, M. Dieudonne, J. Smoliner et al., “Calibrated nanoscale
capacitance measurements using a scanning microwave microscope,” Rev. Sci.
Instrum. 81, 113701 (2010).

213M. Farina, D. Mencarelli, A. Di Donato, G. Venanzoni, and A. Morini,
“Calibration protocol for broadband near-field microwave microscopy,” IEEE
Trans. Microwave Theory Tech. 59, 2769–2776 (2011).

214G. Gramse, M. Kasper, L. Fumagalli, G. Gomila, P. Hinterdorfer, and F.
Kienberger, “Calibrated complex impedance and permittivity measurements
with scanning microwave microscopy,” Nanotechnology 25, 145703 (2014).

215E. Brinciotti, G. Gramse, S. Hommel, T. Schweinboeck, A. Altes, M. A. Fenner,
J. Smoliner, M. Kasper, G. Badino, S.-S. Tuca, and F. Kienberger, “Probing
resistivity and doping concentration of semiconductors at the nanoscale using
scanning microwave microscopy,” Nanoscale 7, 14715–14722 (2015).

216P. Girard, “Electrostatic force microscopy: Principles and some applications to
semiconductors,” Nanotechnology 12, 485 (2001).

217C. Gabriel, E. Grant, and I. Young, “Use of time domain spectroscopy for mea-
suring dielectric properties with a coaxial probe,” J. Phys. E: Sci. Instrum. 19,
843 (1986).

218S. A. Wartenberg, RF Measurements of Die and Packages (Artech House,
2002).

219L. Fumagalli, G. Ferrari, M. Sampietro, and G. Gomila, “Dielectric-constant
measurement of thin insulating films at low frequency by nanoscale capaci-
tance microscopy,” Appl. Phys. Lett. 91, 243110 (2007).

220E. C. Burdette, F. L. Cain, and J. Seals, “In vivo probe measurement technique
for determining dielectric properties at VHF through microwave frequencies,”
IEEE Trans. Microwave Theory Tech. 28, 414–427 (1980).

221X. Chen, Z. Yao, S. G. Stanciu, D. Basov, R. Hillenbrand, and M. Liu, “Rapid
simulations of hyperspectral near-field images of three-dimensional heteroge-
neous surfaces,” Opt. Express 29, 39648–39668 (2021).

222L. Mester, A. A. Govyadinov, and R. Hillenbrand, “High-fidelity nano-FTIR
spectroscopy by on-pixel normalization of signal harmonics,” Nanophotonics
11, 377–390 (2021).

223X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010),
Vol. 29.

224R. A. Lewis, Terahertz Physics (Cambridge University Press, 2012).
225M. Naftaly, Terahertz Metrology (Artech House, 2015).
226A. Leitenstorfer, A. S. Moskalenko, T. Kampfrath, J. Kono, E. Castro-Camus,

K. Peng, N. Qureshi, D. Turchinovich, K. Tanaka, A. Markelz, M. Havenith,
C. Hough, H. J. Joyce, W. J. Padilla, B. Zhou, K.-Y. Kim, X.-C. Zhang, P. U.
Jepsen, S. Dhillon, M. Vitiello, E. Linfield, A. G. Davies, M. C. Hoffmann, R.
Lewis, M. Tonouchi, P. Klarskov, T. S. Seifert, Y. A. Gerasimenko, D.
Mihailovic, R. Huber, J. L. Boland, O. Mitrofanov, P. Dean, B. N. Ellison, P. G.
Huggard, S. P. Rea, C. Walker, D. T. Leisawitz, J. R. Gao, C. Li, Q. Chen, G.
Valu�sis, V. P. Wallace, E. Pickwell-MacPherson, X. Shang, J. Hesler, N. Ridler,
C. C. Renaud, I. Kallfass, T. Nagatsuma, J. A. Zeitler, D. Arnone, M. B.
Johnston, and J. Cunningham, “The 2023 terahertz science and technology
roadmap,” J. Phys. D: Appl. Phys. 56, 223001 (2023).

227R. Lewis, “Semiconductor terahertz physics,” Ann. Phys. 535, 2200393 (2023).
228D. Cooke, A. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F.

Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrys-
tal films,” Phys. Rev. B 73, 193311 (2006).

229M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann,
“Terahertz conductivity of thin gold films at the metal-insulator percolation
transition,” Phys. Rev. B 76, 125408 (2007).

230T. Zhao, P. Xie, H. Wan, T. Ding, M. Liu, J. Xie, E. Li, X. Chen, T. Wang, Q.
Zhang et al., “Ultrathin MXene assemblies approach the intrinsic absorption
limit in the 0.5–10 THz band,” Nat. Photonics 17, 622 (2023).

231J. Allen, T. Sanders, J. Horvat, R. Lewis, and K. Rule, “Determination of vibra-
tional modes of l-alanine single crystals by a combination of terahertz spec-
troscopy measurements and density functional calculations,” Phys. Rev. Lett.
130, 226901 (2023).

232R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics
in semiconductors studied with time-resolved terahertz spectroscopy,” Rev.
Mod. Phys. 83, 543 (2011).

233S. Fan, Y. He, B. S. Ung, and E. Pickwell-MacPherson, “The growth of bio-
medical terahertz research,” J. Phys. D: Appl. Phys. 47, 374009 (2014).

234J. Sibik and J. A. Zeitler, “Direct measurement of molecular mobility and crys-
tallisation of amorphous pharmaceuticals using terahertz spectroscopy,” Adv.
Drug Delivery Rev. 100, 147–157 (2016).

235P. Bawuah and J. A. Zeitler, “Advances in terahertz time-domain spectroscopy
of pharmaceutical solids: A review,” Trends Anal. Chem. 139, 116272 (2021).

236P. A. Banks, E. M. Kleist, and M. T. Ruggiero, “Investigating the function and
design of molecular materials through terahertz vibrational spectroscopy,”
Nat. Rev. Chem. 7, 480–495 (2023).

237Y. Shao, Y. Wang, D. Zhu, X. Xiong, Z. Tian, A. V. Balakin, A. P. Shkurinov,
D. Xu, Y. Wu, Y. Peng, and Y. Zhu, “Measuring heavy metal ions in water
using nature existed microalgae as medium based on terahertz technology,”
J. Hazard. Mater. 435, 129028 (2022).

238A. Ren, A. Zahid, D. Fan, X. Yang, M. A. Imran, A. Alomainy, and Q. H.
Abbasi, “State-of-the-art in terahertz sensing for food and water security—a
comprehensive review,” Trends Food Sci. Technol. 85, 241–251 (2019).

239C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, and P. U.
Jepsen, “Reflection terahertz time-domain imaging for analysis of an 18th cen-
tury neoclassical easel painting,” Appl. Opt. 54, 5123–5129 (2015).

240K. Kr€ugener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M.
Koch, and W. Vi€ol, “Terahertz meets sculptural and architectural art:
Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep.
5, 14842 (2015).

241J. Dong, A. Locquet, M. Melis, and D. Citrin, “Global mapping of stratigraphy
of an old-master painting using sparsity-based terahertz reflectometry,” Sci.
Rep. 7, 15098 (2017).

242F. E. Lambert, J. Ornik, N.-A. Staats, A. J€ackel, G. G. Hernandez-Cardoso, J.
Taiber, E.-M. St€ubling, B. Rudolph, O. Mack, H. Portsteffen et al., “Layer sepa-
ration mapping and consolidation evaluation of a fifteenth century panel
painting using terahertz time-domain imaging,” Sci. Rep. 12, 21038 (2022).

243J. Zhang, X. Chen, S. Mills, T. Ciavatti, Z. Yao, R. Mescall, H. Hu, V.
Semenenko, Z. Fei, H. Li et al., “Terahertz nanoimaging of graphene,” ACS
Photonics 5, 2645–2651 (2018).

244I. Lavor, L. Cavalcante, A. Chaves, F. Peeters, and B. Van Duppen, “Probing
the structure and composition of van der Waals heterostructures using the
nonlocality of Dirac plasmons in the terahertz regime,” 2D Mater. 8, 015014
(2020).

245M. M. Wiecha, R. Kapoor, and H. G. Roskos, “Terahertz scattering-type near-
field microscopy quantitatively determines the conductivity and charge carrier
density of optically doped and impurity-doped silicon,” APL Photonics 6,
126108 (2021).

246A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther,
“Terahertz near-field imaging of electric and magnetic resonances of a planar
metamaterial,” Opt. Express 17, 3826–3834 (2009).

247R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T.
Wenzel, H.-G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M.
Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz
near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).

248R. Degl’Innocenti, R. Wallis, B. Wei, L. Xiao, S. J. Kindness, O. Mitrofanov, P.
Braeuninger-Weimer, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Terahertz
nanoscopy of plasmonic resonances with a quantum cascade laser,” ACS
Photonics 4, 2150–2157 (2017).

249G. Acuna, S. Heucke, F. Kuchler, H.-T. Chen, A. Taylor, and R. Kersting,
“Surface plasmons in terahertz metamaterials,” Opt. Express 16, 18745–18751
(2008).

250O. Mitrofanov, I. Khromova, T. Siday, R. J. Thompson, A. N. Ponomarev, I.
Brener, and J. L. Reno, “Near-field spectroscopy and imaging of subwave-
length plasmonic terahertz resonators,” IEEE Trans. Terahertz Sci. Technol. 6,
382–388 (2016).

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021306 (2024); doi: 10.1063/5.0189061 11, 021306-33

VC Author(s) 2024

 24 N
ovem

ber 2024 03:57:31

https://doi.org/10.1021/acsphotonics.0c01541
https://doi.org/10.1063/5.0094056
https://doi.org/10.1063/1.3123406
https://doi.org/10.1063/1.3491926
https://doi.org/10.1063/1.3491926
https://doi.org/10.1109/TMTT.2011.2161328
https://doi.org/10.1109/TMTT.2011.2161328
https://doi.org/10.1088/0957-4484/25/14/145703
https://doi.org/10.1039/C5NR04264J
https://doi.org/10.1088/0957-4484/12/4/321
https://doi.org/10.1088/0022-3735/19/10/016
https://doi.org/10.1063/1.2821119
https://doi.org/10.1109/TMTT.1980.1130087
https://doi.org/10.1364/OE.440821
https://doi.org/10.1515/nanoph-2021-0565
https://doi.org/10.1088/1361-6463/acbe4c
https://doi.org/10.1002/andp.202200393
https://doi.org/10.1103/PhysRevB.73.193311
https://doi.org/10.1103/PhysRevB.76.125408
https://doi.org/10.1038/s41566-023-01197-x
https://doi.org/10.1103/PhysRevLett.130.226901
https://doi.org/10.1103/RevModPhys.83.543
https://doi.org/10.1103/RevModPhys.83.543
https://doi.org/10.1088/0022-3727/47/37/374009
https://doi.org/10.1016/j.addr.2015.12.021
https://doi.org/10.1016/j.addr.2015.12.021
https://doi.org/10.1016/j.trac.2021.116272
https://doi.org/10.1038/s41570-023-00487-w
https://doi.org/10.1016/j.jhazmat.2022.129028
https://doi.org/10.1016/j.tifs.2019.01.019
https://doi.org/10.1364/AO.54.005123
https://doi.org/10.1038/srep14842
https://doi.org/10.1038/s41598-017-15069-2
https://doi.org/10.1038/s41598-017-15069-2
https://doi.org/10.1038/s41598-022-25013-8
https://doi.org/10.1021/acsphotonics.8b00190
https://doi.org/10.1021/acsphotonics.8b00190
https://doi.org/10.1088/2053-1583/abbecc
https://doi.org/10.1063/5.0070608
https://doi.org/10.1364/OE.17.003826
https://doi.org/10.1021/nl302078w
https://doi.org/10.1021/acsphotonics.7b00687
https://doi.org/10.1021/acsphotonics.7b00687
https://doi.org/10.1364/OE.16.018745
https://doi.org/10.1109/TTHZ.2016.2549367
pubs.aip.org/aip/are


251R. Jing, Y. Shao, Z. Fei, C. F. B. Lo, R. A. Vitalone, F. L. Ruta, J. Staunton, W.
J.-C. Zheng, A. S. Mcleod, Z. Sun et al., “Terahertz response of monolayer and
few-layer WTe2 at the nanoscale,” Nat. Commun. 12, 5594 (2021).

252S. Chen, P. L. Leng, A. Kone�cn�a, E. Modin, M. Gutierrez-Amigo, E. Vicentini,
B. Martín-García, M. Barra-Burillo, I. Niehues, C. M. Escudero, X. Y. Xie, L.
E. Hueso, E. Artacho, J. Aizpurua, I. Errea, M. G. Vergniory, A. Chuvilin, F. X.
Xiu, and R. Hillenbrand, “Real-space observation of ultraconfined in-plane
anisotropic acoustic terahertz plasmon polaritons,” Nat. Mater. 22, 860–866
(2023).

253F. H. Feres, R. A. Mayer, L. Wehmeier, F. C. Maia, E. Viana, A. Malachias, H.
A. Bechtel, J. M. Klopf, L. M. Eng, S. C. Kehr et al., “Sub-diffractional cavity
modes of terahertz hyperbolic phonon polaritons in tin oxide,” Nat.
Commun. 12, 1995 (2021).

254F. H. Feres, I. D. Barcelos, A. R. Cadore, L. Wehmeier, T. N€orenberg, R. A.
Mayer, R. O. Freitas, L. M. Eng, S. C. Kehr, and F. C. B. Maia, “Graphene
nano-optics in the terahertz gap,” Nano Lett. 23, 3913–3920 (2023).

255M. Plankl, P. F. Junior, F. Mooshammer, T. Siday, M. Zizlsperger, F. Sandner,
F. Schiegl, S. Maier, M. A. Huber, M. Gmitra, J. Fabian, J. L. Boland, T. L.
Cocker, and R. Huber, “Subcycle contact-free nanoscopy of ultrafast interlayer
transport in atomically thin heterostructures,” Nat. Photonics 15, 594–600
(2021).

256A. J. Sternbach, R. A. Vitalone, S. Shabani, J. Zhang, T. P. Darlington, S. L.
Moore, S. H. Chae, E. Seewald, X. Xu, C. R. Dean et al., “Quenched excitons
in WSe2/a-RuCl3 heterostructures revealed by multimessenger nanoscopy,”
Nano Lett. 23, 5070–5075 (2023).

257R. H. Kim, C. Huang, Y. Luan, L.-L. Wang, Z. Liu, J.-M. Park, L. Luo, P. M.
Lozano, G. Gu, D. Turan et al., “Terahertz nano-imaging of electronic strip
heterogeneity in a Dirac semimetal,” ACS Photonics 8, 1873–1880 (2021).

258H. Zhan, V. Astley, M. Hvasta, J. A. Deibel, D. M. Mittleman, and Y.-S. Lim,
“The metal-insulator transition in VO2 studied using terahertz apertureless
near-field microscopy,” Appl. Phys. Lett. 91, 162110 (2007).

259H. T. Stinson, A. Sternbach, O. Najera, R. Jing, A. S. Mcleod, T. V. Slusar, A.
Mueller, L. Anderegg, H. T. Kim, M. Rozenberg, and D. N. Basov, “Imaging
the nanoscale phase separation in vanadium dioxide thin films at terahertz
frequencies,” Nat. Commun. 9, 3604 (2018).

260J. Barnett, L. Wehmeier, A. Heßler, M. Lewin, J. Pries, M. Wuttig, J. M. Klopf,
S. C. Kehr, L. M. Eng, and T. Taubner, “Far-infrared near-field optical imag-
ing and kelvin probe force microscopy of laser-crystallized and-amorphized
phase change material Ge3Sb2Te6,” Nano Lett. 21, 9012–9020 (2021).

261A. Soltani, F. Kuschewski, M. Bonmann, A. Generalov, A. Vorobiev, F.
Ludwig, M. M. Wiecha, D. �Cibirait_e, F. Walla, S. Winnerl et al., “Direct nano-
scopic observation of plasma waves in the channel of a graphene field-effect
transistor,” Light: Sci. Appl. 9, 97 (2020).

262V. Pushkarev, H. N�emec, V. C. Paingad, J. Ma�n�ak, V. Jurka, V. Nov�ak, T.
Ostatnick�y, and P. Ku�zel, “Charge transport in single-crystalline GaAs nano-
bars: Impact of band bending revealed by terahertz spectroscopy,” Adv. Funct.
Mater. 32, 2107403 (2022).

263R. H. Kim, Z. Liu, C. Huang, J.-M. Park, S. J. Haeuser, Z. Song, Y. Yan, Y. Yao,
L. Luo, and J. Wang, “Terahertz nanoimaging of perovskite solar cell materi-
als,” ACS Photonics 9, 3550–3556 (2022).

264J. Hou, P. Chen, A. Shukla, A. Krajnc, T. Wang, X. Li, R. Doasa, L. H. Tizei, B.
Chan, D. N. Johnstone et al., “Liquid-phase sintering of lead halide perovskites
and metal-organic framework glasses,” Science 374, 621–625 (2021).

265A. M. Jakob, S. G. Robson, V. Schmitt, V. Mourik, M. Posselt, D. Spemann, B.
C. Johnson, H. R. Firgau, E. Mayes, J. C. McCallum et al., “Deterministic shal-
low dopant implantation in silicon with detection confidence upper-bound to
99.85% by ion–solid interactions,” Adv. Mater. 34, 2103235 (2022).

266L. Thomas, T. Hannotte, C. N. Santos, B. Walter, M. Lavancier, S. Eliet, M.
Faucher, J.-F. Lampin, and R. Peretti, “Imaging of THz photonic modes by
scattering scanning near-field optical microscopy,” ACS Appl. Mater.
Interfaces 14, 32608–32617 (2022).

267C. Wu, C. Wang, G. You, and J. Cao, “Terahertz nanoscopy of metal and gal-
lium implanted silicon,” ACS Adv. Opt. Mater. 1, 843–851 (2023).

268S. Ge, D. Zhang, Z. Peng, and J. Meng, “Rough surface effect in terahertz
near-field microscopy: 3D simulation analysis,” Appl. Opt. 62, 6333–6342
(2023).

269T. L. Cocker, D. Baillie, M. Buruma, L. V. Titova, R. D. Sydora, F. Marsiglio,
and F. A. Hegmann, “Microscopic origin of the Drude–Smith model,” Phys.
Rev. B 96, 205439 (2017).

270N. Smith, “Drude theory and the optical properties of liquid mercury,” Phys.
Lett. A 26, 126–127 (1968).

271N. Smith, “Classical generalization of the Drude formula for the optical con-
ductivity,” Phys. Rev. B 64, 155106 (2001).

272H.-K. Nienhuys and V. Sundstr€om, “Influence of plasmons on terahertz con-
ductivity measurements,” Appl. Phys. Lett. 87, 012101 (2005).

273M. T. Quick, N. Owschimikow, and A. W. Achtstein, “Terahertz charge carrier
mobility in 1D and 2D semiconductor nanoparticles,” J. Phys. Chem. Lett. 12,
7688–7695 (2021).

274M. T. Quick, S. Ayari, N. Owschimikow, S. Jaziri, and A. W. Achtstein,
“Quantum nature of THz conductivity: Excitons, charges, and trions in 2D
semiconductor nanoplatelets and implications for THz imaging and solar
hydrogen generation,” ACS Appl. Nano Mater. 5, 8306–8313 (2022).

275M. T. Quick, S. Ayari, N. Owschimikow, S. Jaziri, and A. W. Achtstein, “THz
mobility and polarizability: Impact of transformation and dephasing on the
spectral response of excitons in a 2d semiconductor,” Phys. Chem. Chem.
Phys. 25, 3354–3360 (2023).

276M. T. Quick, Q. Wach, N. Owschimikow, and A. W. Achtstein, “THz response
of charge carriers in nanoparticles: Microscopic master equations reveal an
unexplored equilibration current and nonlinear mobility regimes,” Adv.
Photonics Res. 4, 2200243 (2023).

277X. Guo, Z. Degnan, J. A. Steele, E. Solano, B. C. Donose, K. Bertling, A.
Fedorov, A. D. Raki�c, and P. Jacobson, “Near-field localization of the boson
peak on tantalum films for superconducting quantum devices,” J. Phys. Chem.
Lett. 14, 4892–4900 (2023).

278S. B. Hancock, D. P. Landau, N. A. Aghamiri, and Y. Abate, “Langevin
dynamics/Monte Carlo simulations method for calculating nanoscale dielec-
tric functions of materials,” Phys. Rev. Mater. 6, 076001 (2022).

279Y. Yu, C. Yang, M. Baggioli, A. E. Phillips, A. Zaccone, L. Zhang, R. Kajimoto,
M. Nakamura, D. Yu, and L. Hong, “The x3 scaling of the vibrational density
of states in quasi-2D nanoconfined solids,” Nat. Commun. 13, 3649 (2022).

280S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface
polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109, 153902
(2012).

281D. N. Basov, A. Asenjo-Garcia, P. J. Schuck, X. Zhu, and A. Rubio, “Polariton
panorama,” Nanophotonics 10, 549–577 (2020).

282T. V. A. G. de Oliveira, T. N€orenberg, G. �Alvarez-P�erez, L. Wehmeier, J.
Taboada-Guti�errez, M. Obst, F. Hempel, E. J. Lee, J. M. Klopf, I. Errea, A. Y.
Nikitin, S. C. Kehr, P. Alonso-Gonzalez, and L. M. Eng, “Nanoscale-confined
terahertz polaritons in a van der Waals crystal,” Adv. Mater. 33, 2005777
(2021).

283S. Chen, A. Bylinkin, Z. Wang, M. Schnell, G. Chandan, P. Li, A. Y. Nikitin, S.
Law, and R. Hillenbrand, “Real-space nanoimaging of THz polaritons in the
topological insulator Bi2Se3,” Nat. Commun. 13, 1374 (2022).

284S. Sch€affer, C. O. Ogolla, Y. Loth, T. Haeger, C. Kreusel, M. Runkel, T. Riedl,
B. Butz, A. K. Wigger, and P. H. Bolívar, “Imaging the terahertz nanoscale
conductivity of polycrystalline CsPbBr3 perovskite thin films,” Nano Lett. 23,
2074–2080 (2023).

285T. N€orenberg, G. �Alvarez P�erez, M. Obst, L. Wehmeier, F. Hempel, J. M.
Klopf, A. Y. Nikitin, S. C. Kehr, L. M. Eng, P. Alonso-Gonz�alez, and T. V. A.
G. de Oliveira, “Germanium monosulfide as a natural platform for highly
anisotropic THz polaritons,” ACS Nano 16, 20174–20185 (2022).

286D. Barcons Ruiz, N. C. Hesp, H. H. Sheinfux, C. R. Marim�on, M. Maissen, A.
Principi, R. Asgari, T. Taniguchi, K. Watanabe, M. Polini et al., “Experimental
signatures of the transition from acoustic plasmon to electronic sound in gra-
phene,” Sci. Adv. 9, eadi0415 (2023).

287P. Alonso-Gonz�alez, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A.
Principi, N. Forcellini, W. Yan, S. V�elez, A. J. Huber et al., “Acoustic terahertz
graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol.
12, 31–35 (2017).

288U. Buchenau, M. Prager, N. N€ucker, A. Dianoux, N. Ahmad, and W. Phillips,
“Low-frequency modes in vitreous silica,” Phys. Rev. B 34, 5665 (1986).

289V. K. Malinovsky and A. P. Sokolov, “The nature of boson peak in Raman
scattering in glasses,” Solid State Commun. 57, 757–761 (1986).

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021306 (2024); doi: 10.1063/5.0189061 11, 021306-34

VC Author(s) 2024

 24 N
ovem

ber 2024 03:57:31

https://doi.org/10.1038/s41467-021-23933-z
https://doi.org/10.1038/s41563-023-01547-8
https://doi.org/10.1038/s41467-021-22209-w
https://doi.org/10.1038/s41467-021-22209-w
https://doi.org/10.1021/acs.nanolett.3c00578
https://doi.org/10.1038/s41566-021-00813-y
https://doi.org/10.1021/acs.nanolett.3c00974
https://doi.org/10.1021/acsphotonics.1c00216
https://doi.org/10.1063/1.2801359
https://doi.org/10.1038/s41467-018-05998-5
https://doi.org/10.1021/acs.nanolett.1c02353
https://doi.org/10.1038/s41377-020-0321-0
https://doi.org/10.1002/adfm.202107403
https://doi.org/10.1002/adfm.202107403
https://doi.org/10.1021/acsphotonics.2c00861
https://doi.org/10.1126/science.abf4460
https://doi.org/10.1002/adma.202103235
https://doi.org/10.1021/acsami.2c01871
https://doi.org/10.1021/acsami.2c01871
https://doi.org/10.1021/acsaom.3c00009
https://doi.org/10.1364/AO.496849
https://doi.org/10.1103/PhysRevB.96.205439
https://doi.org/10.1103/PhysRevB.96.205439
https://doi.org/10.1016/0375-9601(68)90513-6
https://doi.org/10.1016/0375-9601(68)90513-6
https://doi.org/10.1103/PhysRevB.64.155106
https://doi.org/10.1063/1.1977213
https://doi.org/10.1021/acs.jpclett.1c02045
https://doi.org/10.1021/acsanm.2c01385
https://doi.org/10.1039/D2CP03584G
https://doi.org/10.1039/D2CP03584G
https://doi.org/10.1002/adpr.202200243
https://doi.org/10.1002/adpr.202200243
https://doi.org/10.1021/acs.jpclett.3c00850
https://doi.org/10.1021/acs.jpclett.3c00850
https://doi.org/10.1103/PhysRevMaterials.6.076001
https://doi.org/10.1038/s41467-022-31349-6
https://doi.org/10.1103/PhysRevLett.109.153902
https://doi.org/10.1515/nanoph-2020-0449
https://doi.org/10.1002/adma.202005777
https://doi.org/10.1038/s41467-022-28791-x
https://doi.org/10.1021/acs.nanolett.2c03214
https://doi.org/10.1021/acsnano.2c05376
https://doi.org/10.1126/sciadv.adi0415
https://doi.org/10.1038/nnano.2016.185
https://doi.org/10.1103/PhysRevB.34.5665
https://doi.org/10.1016/0038-1098(86)90854-9
pubs.aip.org/aip/are


290M. Kabeya, T. Mori, Y. Fujii, A. Koreeda, B. W. Lee, J.-H. Ko, and S. Kojima,
“Boson peak dynamics of glassy glucose studied by integrated terahertz-band
spectroscopy,” Phys. Rev. B 94, 224204 (2016).

291R. H. Kim, J. M. Park, S. Haeuser, C. Huang, D. Cheng, T. Koschny, J. Oh, C.
Kopas, H. Cansizoglu, K. Yadavalli et al., “Visualizing heterogeneous dipole
fields by terahertz light coupling in individual nano-junctions,” Commun.
Phys. 6, 147 (2023).

292F. Hu and Z. Fei, “Recent progress on exciton polaritons in layered transition-
metal dichalcogenides,” Adv. Opt. Mater. 8, 1901003 (2020).

293M. Obst, T. N€orenberg, G. �Alvarez-P�erez, T. V. de Oliveira, J. Taboada-
Guti�errez, F. H. Feres, F. G. Kaps, O. Hatem, A. Luferau, A. Y. Nikitin et al.,
“Terahertz twistoptics–engineering canalized phonon polaritons,” ACS Nano
17, 19313–19322 (2023).

294J. Duan, G. �Alvarez-P�erez, C. Lanza, K. Voronin, A. Tresguerres-Mata, N.
Capote-Robayna, J. �Alvarez-Cuervo, A. Tarazaga Martín-Luengo, J. Martín-
S�anchez, V. Volkov et al., “Multiple and spectrally robust photonic magic
angles in reconfigurable a-MoO3 trilayers,” Nat. Mater. 22, 867–872 (2023).

295E. Galiffi, G. Carini, X. Ni, G. �Alvarez-P�erez, S. Yves, E. M. Renzi, R. Nolen, S.
Wasserroth, M. Wolf, P. Alonso-Gonzalez et al., “Extreme light confinement
and control in low-symmetry phonon-polaritonic crystals,” Nat. Rev. Mater.
9, 9–28 (2024).

296A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature
499, 419–425 (2013).

297R. Xiang, T. Inoue, Y. Zheng, A. Kumamoto, Y. Qian, Y. Sato, M. Liu, D.
Tang, D. Gokhale, J. Guo et al., “One-dimensional van der Waals heterostruc-
tures,” Science 367, 537–542 (2020).

298C. Li, J. Jang, T. Badloe, T. Yang, J. Kim, J. Kim, M. Nguyen, S. A. Maier, J.
Rho, H. Ren, and I. Aharonovich, “Arbitrarily structured quantum emission
with a multifunctional metalens,” eLight 3, 19 (2023).

299Y. Wu, J. Duan, W. Ma, Q. Ou, P. Li, P. Alonso-Gonz�alez, J. D. Caldwell, and
Q. Bao, “Manipulating polaritons at the extreme scale in van der Waals mate-
rials,” Nat. Rev. Phys. 4, 578–594 (2022).

300J. Lv, Y. Wu, J. Liu, Y. Gong, G. Si, G. Hu, Q. Zhang, Y. Zhang, J.-X. Tang, M.
S. Fuhrer, H. Chen, S. A. Maier, Q. Cheng-Wei, and O. Qingdong,
“Hyperbolic polaritonic crystals with configurable low-symmetry Bloch
modes,” Nat. Commun. 14, 3894 (2023).

301U. Zschieschang, U. Waizmann, J. Weis, J. W. Borchert, and H. Klauk,
“Nanoscale flexible organic thin-film transistors,” Sci. Adv. 8, eabm9845
(2022).

302M. Kober-Czerny, S. G. Motti, P. Holzhey, B. Wenger, J. Lim, L. M. Herz, and
H. J. Snaith, “Excellent long-range charge-carrier mobility in 2D perovskites,”
Adv. Funct. Mater. 32, 2203064 (2022).

303Y. Zhou, L. M. Herz, A. K. Jen, and M. Saliba, “Advances and challenges in
understanding the microscopic structure–property–performance relationship
in perovskite solar cells,” Nat. Energy 7, 794–807 (2022).

304L. R. Buizza, H. C. Sansom, A. D. Wright, A. M. Ulatowski, M. B. Johnston,
H. J. Snaith, and L. M. Herz, “Interplay of structure, charge-carrier localiza-
tion and dynamics in copper-silver-bismuth-halide semiconductors,” Adv.
Funct. Mater. 32, 2108392 (2022).

305M. Frenzel, M. Cherasse, J. M. Urban, F. Wang, B. Xiang, L. Nest, L. Huber, L.
Perfetti, M. Wolf, T. Kampfrath et al., “Nonlinear terahertz control of the lead
halide perovskite lattice,” Sci. Adv. 9, eadg3856 (2023).

306Y. Luo, M. R. Abidian, J.-H. Ahn, D. Akinwande, A. M. Andrews, M.
Antonietti, Z. Bao, M. Berggren, C. A. Berkey, C. J. Bettinger et al.,
“Technology roadmap for flexible sensors,” ACS Nano 17, 5211–5295 (2023).

307A. V�azquez-Guardado, Y. Yang, and J. A. Rogers, “Challenges and opportuni-
ties in flexible, stretchable and morphable bio-interfaced technologies,” Natl.
Sci. Rev. 9, nwac016 (2022).

308Y. Jiang, S. Ji, J. Sun, J. Huang, Y. Li, G. Zou, T. Salim, C. Wang, W. Li, H. Jin
et al., “A universal interface for plug-and-play assembly of stretchable devi-
ces,” Nature 614, 456–462 (2023).

309W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury, J.-C. Lai, H. Gong, S.
Niu, X. Yan, Y. Zheng et al., “Neuromorphic sensorimotor loop embodied by
monolithically integrated, low-voltage, soft e-skin,” Science 380, 735–742
(2023).

310T. Cheng, J. Shao, and Z. L. Wang, “Triboelectric nanogenerators,” Nat. Rev.
Methods Primers 3, 39 (2023).

311C. Heo, T. Ha, C. You, T. Huynh, H. Lim, J. Kim, M. R. Kesama, J. Lee, T.-T.
Kim, and Y. H. Lee, “Identifying fibrillization state of ab protein via near-field
THz conductance measurement,” ACS Nano 14, 6548–6558 (2020).

312Z. Yang, D. Tang, J. Hu, M. Tang, M. Zhang, H.-L. Cui, L. Wang, C. Chang, C.
Fan, J. Li, and H. Wang, “Near-field nanoscopic terahertz imaging of single
proteins,” Small 17, 2005814 (2021).

313Z. Li, S. Yan, Z. Zang, G. Geng, Z. Yang, J. Li, L. Wang, C. Yao, H.-L. Cui, C.
Chang, and H. Wang, “Single cell imaging with near-field terahertz scanning
microscopy,” Cell Proliferation 53, e12788 (2020).

314X. Qi, K. Bertling, M. S. Stark, T. Taimre, Y.-C. Kao, Y. L. Lim, S. Han, B.
O’Brien, A. Collins, M. Walsh, J. Torniainen, T. Gillespie, B. C. Donose, P.
Dean, L. H. Li, E. H. Linfield, A. G. Davies, D. Indjin, H. P. Soyer, and A. D.
Raki�c, “Terahertz imaging of human skin pathologies using laser feedback
interferometry with quantum cascade lasers,” Biomed. Opt. Express 14, 1393–
1410 (2023).

315G. Geng, G. Dai, D. Li, S. Zhou, Z. Li, Z. Yang, Y. Xu, J. Han, T. Chang, H.-L.
Cui, and H. Wang, “Imaging brain tissue slices with terahertz near-field
microscopy,” Biotechnol. Prog. 35, e2741 (2019).

316S. Sch€affer, A. K. Wigger, and P. H. Bolívar, “Substrate-enhanced THz nano-
scopic recognition of single bacteria,” in 2019 44th International Conference on
Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2019), pp. 1–2.

317A. Tselev, J. Velmurugan, A. V. Ievlev, S. V. Kalinin, and A. Kolmakov,
“Seeing through walls at the nanoscale: Microwave microscopy of enclosed
objects and processes in liquids,” ACS Nano 10, 3562–3570 (2016).

318S. Gu, T. Lin, and T. Lasri, “Dielectric properties characterization of saline sol-
utions by near-field microwave microscopy,” Meas. Sci. Technol. 28, 014014
(2016).

319D. A. Ohlberg, D. Tami, A. C. Gadelha, E. G. Neto, F. C. Santana, D. Miranda,
W. Avelino, K. Watanabe, T. Taniguchi, L. C. Campos et al., “The limits of
near field immersion microwave microscopy evaluated by imaging bilayer gra-
phene moir�e patterns,” Nat. Commun. 12, 2980 (2021).

320M. Farina, C. Joseph, S. A. Azman, A. Morini, L. Pierantoni, D. Mencarelli, A.
di Donato, T. Pietrangelo, and R. Al Hadi, “Analytical expressions for spread-
ing resistance in lossy media and their application to the calibration of scan-
ning microwave microscopy,” RSC Adv. 13, 21277–21282 (2023).

321E. Seabron, S. MacLaren, X. Xie, S. V. Rotkin, J. A. Rogers, and W. L. Wilson,
“Scanning probe microwave reflectivity of aligned single-walled carbon nano-
tubes: Imaging of electronic structure and quantum behavior at the nanoscale,”
ACS Nano 10, 360–368 (2016).

322F. Guan, X. Guo, S. Zhang, K. Zeng, Y. Hu, C. Wu, S. Zhou, Y. Xiang, X. Yang,
Q. Dai, and S. Zhang, “Compensating losses in polariton propagation with syn-
thesized complex frequency excitation,” Nat. Mater. 23, 506–511 (2024).

323F. Guan, X. Guo, K. Zeng, S. Zhang, Z. Nie, S. Ma, Q. Dai, J. Pendry, X.
Zhang, and S. Zhang, “Overcoming losses in superlenses with synthetic waves
of complex frequency,” Science 381, 766–771 (2023).

324A. Tuniz and B. T. Kuhlmey, “Subwavelength terahertz imaging via virtual
superlensing in the radiating near field,” Nat. Commun. 14, 6393 (2023).

325J.-S. Park, S. W. D. Lim, A. Amirzhan, H. Kang, K. Karrfalt, D. Kim, J. Leger,
A. Urbas, M. Ossiander, Z. Li, and F. Capasso, “All-glass 100mm diameter
visible metalens for imaging the Cosmos,” ACS Nano 18, 3187–3189 (2024).

326M. Beddoe, T. G€olz, M. Barkey, E. Bau, M. Godejohann, S. A. Maier, F.
Keilmann, M. Moldovan, D. Prodan, N. Ilie et al., “Probing the micro-and
nanoscopic properties of dental materials using infrared spectroscopy: A
proof-of-principle study,” Acta Biomater. 168, 309–322 (2023).

327R. Wilcken, J. Nishida, J. F. Triana, A. John-Herpin, H. Altug, S. Sharma, F.
Herrera, and M. B. Raschke, “Antenna-coupled infrared nanospectroscopy of
intramolecular vibrational interaction,” Proc. Natl. Acad. Sci. U. S. A. 120,
e2220852120 (2023).

328H. Cheon, J. H. Paik, M. Choi, H.-J. Yang, and J.-H. Son, “Detection and
manipulation of methylation in blood cancer DNA using terahertz radiation,”
Sci. Rep. 9, 6413–6413 (2019).

329Y. H. Tao, S. I. Hodgetts, A. R. Harvey, and V. P. Wallace, “Reproducibility of
terahertz peaks in a frozen aqueous solution of 5-methylcytidine,” J. Infrared
Millimeter Terahertz Waves 42, 588–606 (2021).

330M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectro-
scopic mapping of single nanoparticles and viruses at nanoscale resolution,”
Nano Lett. 6, 1307–1310 (2006).

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021306 (2024); doi: 10.1063/5.0189061 11, 021306-35

VC Author(s) 2024

 24 N
ovem

ber 2024 03:57:31

https://doi.org/10.1103/PhysRevB.94.224204
https://doi.org/10.1038/s42005-023-01259-0
https://doi.org/10.1038/s42005-023-01259-0
https://doi.org/10.1002/adom.201901003
https://doi.org/10.1021/acsnano.3c06477
https://doi.org/10.1038/s41563-023-01582-5
https://doi.org/10.1038/s41578-023-00620-7
https://doi.org/10.1038/nature12385
https://doi.org/10.1126/science.aaz2570
https://doi.org/10.1186/s43593-023-00052-4
https://doi.org/10.1038/s42254-022-00472-0
https://doi.org/10.1038/s41467-023-39543-w
https://doi.org/10.1126/sciadv.abm9845
https://doi.org/10.1002/adfm.202203064
https://doi.org/10.1038/s41560-022-01096-5
https://doi.org/10.1002/adfm.202108392
https://doi.org/10.1002/adfm.202108392
https://doi.org/10.1126/sciadv.adg3856
https://doi.org/10.1021/acsnano.2c12606
https://doi.org/10.1093/nsr/nwac016
https://doi.org/10.1093/nsr/nwac016
https://doi.org/10.1038/s41586-022-05579-z
https://doi.org/10.1126/science.ade0086
https://doi.org/10.1038/s43586-023-00220-3
https://doi.org/10.1038/s43586-023-00220-3
https://doi.org/10.1021/acsnano.9b08572
https://doi.org/10.1002/smll.202005814
https://doi.org/10.1111/cpr.12788
https://doi.org/10.1364/BOE.480615
https://doi.org/10.1002/btpr.2741
https://doi.org/10.1021/acsnano.5b07919
https://doi.org/10.1088/1361-6501/28/1/014014
https://doi.org/10.1038/s41467-021-23253-2
https://doi.org/10.1039/D3RA03766E
https://doi.org/10.1021/acsnano.5b04975
https://doi.org/10.1038/s41563-023-01787-8
https://doi.org/10.1126/science.adi1267
https://doi.org/10.1038/s41467-023-41949-5
https://doi.org/10.1021/acsnano.3c09462
https://doi.org/10.1016/j.actbio.2023.07.017
https://doi.org/10.1073/pnas.2220852120
https://doi.org/10.1038/s41598-019-42855-x
https://doi.org/10.1007/s10762-021-00793-8
https://doi.org/10.1007/s10762-021-00793-8
https://doi.org/10.1021/nl0610836
pubs.aip.org/aip/are


331S. Berweger, D. M. Nguyen, E. A. Muller, H. A. Bechtel, T. T. Perkins, and M.
B. Raschke, “Nano-chemical infrared imaging of membrane proteins in lipid
bilayers,” J. Am. Chem. Soc. 135, 18292–18295 (2013).

332I. Amenabar, S. Poly, W. Nuansing, E. H. Hubrich, A. A. Govyadinov, F.
Huth, R. Krutokhvostov, L. Zhang, M. Knez, J. Heberle et al., “Structural anal-
ysis and mapping of individual protein complexes by infrared nanospectro-
scopy,” Nat. Commun. 4, 2890 (2013).

333B. T. O’Callahan, K. T. Crampton, I. V. Novikova, T. Jian, C.-L. Chen, J. E.
Evans, M. B. Raschke, P. Z. El-Khoury, and A. S. Lea, “Imaging nanoscale het-
erogeneity in ultrathin biomimetic and biological crystals,” J. Phys. Chem. C
122, 24891–24895 (2018).

334B. T. O’Callahan, M. Hentschel, M. B. Raschke, P. Z. El-Khoury, and A. S. Lea,
“Ultrasensitive tip-and antenna-enhanced infrared nanoscopy of protein com-
plexes,” J. Phys. Chem. C 123, 17505–17509 (2019).

335O. Khatib, J. D. Wood, A. S. McLeod, M. D. Goldflam, M. Wagner, G. L.
Damhorst, J. C. Koepke, G. P. Doidge, A. Rangarajan, R. Bashir et al.,
“Graphene-based platform for infrared near-field nanospectroscopy of water
and biological materials in an aqueous environment,” ACS Nano 9, 7968–
7975 (2015).

336K. J. Kaltenecker, T. G€olz, E. Bau, and F. Keilmann, “Infrared-spectroscopic,
dynamic near-field microscopy of living cells and nanoparticles in water,” Sci.
Rep. 11, 21860 (2021).

337B. T. O’Callahan, K.-D. Park, I. V. Novikova, T. Jian, C.-L. Chen, E. A. Muller,
P. Z. El-Khoury, M. B. Raschke, and A. S. Lea, “In liquid infrared scattering
scanning near-field optical microscopy for chemical and biological nano-
imaging,” Nano Lett. 20, 4497–4504 (2020).

338E. Pfitzner and J. Heberle, “Infrared scattering-type scanning near-field optical
microscopy of biomembranes in water,” J. Phys. Chem. Lett. 11, 8183–8188
(2020).

339D. Virmani, A. Bylinkin, I. Dolado, E. Janzen, J. H. Edgar, and R. Hillenbrand,
“Amplitude-and phase-resolved infrared nanoimaging and nanospectroscopy
of polaritons in a liquid environment,” Nano Lett. 21, 1360–1367 (2021).

340X. Zhao, D. Li, Y.-H. Lu, B. Rad, C. Yan, H. A. Bechtel, P. D. Ashby, and M.
B. Salmeron, “In vitro investigation of protein assembly by combined micros-
copy and infrared spectroscopy at the nanometer scale,” Proc. Natl. Acad. Sci.
U. S. A. 119, e2200019119 (2022).

341Z. Wang, M. Zheng, H. Duan, S. Hu, and Z. Yuan, “Re-configuring main-
stream anammox,” Chem. Eng. J. 445, 136817 (2022).

342H. Duan, S. Watts, M. Zheng, Z. Wang, J. Zhao, H. Li, P. Liu, J. Dwyer, P.
McPhee, M. Rattier et al., “Achieving robust mainstream nitrite shunt at pilot-
scale with integrated sidestream sludge treatment and step-feed,” Water Res.
223, 119034 (2022).

343X. Zhang, Z. Yuan, and S. Hu, “Anaerobic oxidation of methane mediated by
microbial extracellular respiration,” Environ. Microbiol. Rep. 13, 790–804
(2021).

344X. Zhang, G. H. Joyce, A. O. Leu, J. Zhao, H. Rabiee, B. Virdis, G. W. Tyson,
Z. Yuan, S. J. McIlroy, and S. Hu, “Multi-heme cytochrome-mediated extracel-
lular electron transfer by the anaerobic methanotroph ‘Candidatus methano-
peredens nitroreducens’, ” Nat. Commun. 14, 6118 (2023).

345Z. Wang, T. Liu, H. Duan, Y. Song, X. Lu, S. Hu, Z. Yuan, D. Batstone, and M.
Zheng, “Post-treatment options for anaerobically digested sludge: Current sta-
tus and future prospect,”Water Res. 205, 117665 (2021).

346G. C. Wong, J. D. Antani, P. P. Lele, J. Chen, B. Nan, M. J. K€uhn, A. Persat,
J.-L. Bru, N. M. Høyland-Kroghsbo, A. Siryaporn et al., “Roadmap on emerg-
ing concepts in the physical biology of bacterial biofilms: From surface sensing
to community formation,” Phys. Biol. 18, 051501 (2021).

347Z. Wang, M. Zheng, H. Duan, Z. Yuan, and S. Hu, “A 20-year journey of par-
tial nitritation and anammox (PN/A): From sidestream toward mainstream,”
Environ. Sci. Technol. 56, 7522–7531 (2022).

348J. Li, W. Ahmed, S. Metcalfe, W. J. Smith, P. M. Choi, G. Jackson, X. Cen, M.
Zheng, S. L. Simpson, K. V. Thomas et al., “Impact of sewer biofilms on fate
of SARS-CoV-2 RNA and wastewater surveillance,” Nat. Water 1, 272–280
(2023).

349F. Wang, Y. Gu, J. P. O’Brien, M. Y. Sophia, S. E. Yalcin, V. Srikanth, C. Shen,
D. Vu, N. L. Ing, A. I. Hochbaum et al., “Structure of microbial nanowires
reveals stacked hemes that transport electrons over micrometers,” Cell 177,
361–369 (2019).

350S. E. Yalcin, J. P. O’Brien, Y. Gu, K. Reiss, M. Y. Sophia, R. Jain, V. Srikanth,
P. J. Dahl, W. Huynh, D. Vu et al., “Electric field stimulates production of
highly conductive microbial OmcZ nanowires,” Nat. Chem. Biol. 16, 1136–
1142 (2020).

351D. R. Lovley and D. E. Holmes, “Electromicrobiology: The ecophysiology of
phylogenetically diverse electroactive microorganisms,” Nat. Rev. Microbiol.
20, 5–19 (2021).

352D. Liang, X. Liu, T. L. Woodard, D. E. Holmes, J. A. Smith, K. P. Nevin, Y.
Feng, and D. R. Lovley, “Extracellular electron exchange capabilities of
Desulfovibrio ferrophilus and Desulfopila corrodens,” Environ. Sci. Technol.
55, 16195–16203 (2021).

353Y. Gu, M. J. Guberman-Pfeffer, V. Srikanth, C. Shen, F. Giska, K. Gupta, Y.
Londer, F. A. Samatey, V. S. Batista, and N. S. Malvankar, “Structure of geo-
bacter cytochrome OmcZ identifies mechanism of nanowire assembly and
conductivity,” Nat. Microbiol. 8, 284–298 (2023).

354F. Wang, L. Craig, X. Liu, C. Rensing, and E. H. Egelman, “Models are useful
until high-resolution structures are available,” Trends Microbiol. 31, 550–551
(2023).

355F. Wang, L. Craig, X. Liu, C. Rensing, and E. H. Egelman, “Microbial nano-
wires: Type IV pili or cytochrome filaments?,” Trends Microbiol. 31, 384–392
(2023).

356Y. Cao, Y. E, P. Huang, and X.-C. Zhang, “Broadband terahertz wave emission
from liquid metal,” Appl. Phys. Lett. 117, 041107 (2020).

357Y. E, L. Zhang, A. Tsypkin, S. Kozlov, C. Zhang, and X.-C. Zhang, “Progress,
challenges, and opportunities of terahertz emission from liquids,” J. Opt. Soc.
Am. B 39, A43–A51 (2022).

358Y. Tan, H. Zhao, W.-M. Wang, R. Zhang, Y.-J. Zhao, C.-L. Zhang, X.-C.
Zhang, and L.-L. Zhang, “Water-based coherent detection of broadband tera-
hertz pulses,” Phys. Rev. Lett. 128, 093902 (2022).

359M.-H. Zhang, W. Xiao, W.-M. Wang, R. Zhang, C.-L. Zhang, X.-C. Zhang,
and L.-L. Zhang, “Highly sensitive detection of broadband terahertz waves
using aqueous salt solutions,” Opt. Express 30, 39142–39151 (2022).

360P. S. Carney, B. Deutsch, A. A. Govyadinov, and R. Hillenbrand, “Phase in
nanooptics,” ACS Nano 6, 8–12 (2012).

361F. Mohn, L. Gross, N. Moll, and G. Meyer, “Imaging the charge distribution
within a single molecule,” Nat. Nanotechnol. 7, 227–231 (2012).

362A. Farokh Payam and A. Passian, “Imaging beyond the surface region: Probing
hidden materials via atomic force microscopy,” Sci. Adv. 9, eadg8292 (2023).

363K. P. Gaikovich and P. K. Gaikovich, “Inverse problem of near-field scattering
in multilayer media,” Inverse Prob. 26, 125013 (2010).

364A. G. Markelz and D. M. Mittleman, “Perspective on terahertz applications in
bioscience and biotechnology,” ACS Photonics 9, 1117–1126 (2022).

365T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface
imaging by scattering-type near-field optical microscopy,” Opt. Express 13,
8893–8899 (2005).

366C.-F. Wang, B. Kafle, T. E. Tesema, H. Kookhaee, and T. G. Habteyes,
“Molecular sensitivity of near-field vibrational infrared imaging,” J. Phys.
Chem. C 124, 21018–21026 (2020).

367W. Zhang and Y. Chen, “Visibility of subsurface nanostructures in scattering-
type scanning near-field optical microscopy imaging,” Opt. Express 28, 6696–
6707 (2020).

368Y. Wang, Z. Xia, H. Wu, S. Li, T. Wang, and B. Sun, “Unrevealing charge car-
rier selective layer in silicon heterojunction solar cells via multifunctional
atomic force probes,” Sol. RRL 3, 1900312 (2019).

369L. Mester, A. A. Govyadinov, S. Chen, M. Goikoetxea, and R. Hillenbrand,
“Subsurface chemical nanoidentification by nano-FTIR spectroscopy,” Nat.
Commun. 11, 3359 (2020).

370H. He, Z. Chen, Y.-T. Lin, S. H. Hahn, J. Yu, A. C. van Duin, T. D. Gokus, S.
V. Rotkin, and S. H. Kim, “Subsurface structural change of silica upon nano-
scale physical contact: Chemical plasticity beyond topographic elasticity,”
Acta Mater. 208, 116694 (2021).

371X. Zhang, A. J. Du, P. Lee, D. D. Sun, and J. O. Leckie, “TiO2 nanowire mem-
brane for concurrent filtration and photocatalytic oxidation of humic acid in
water,” J. Membr. Sci. 313, 44–51 (2008).

372Z. Wang, X. Yan, Q. Hou, Y. Liu, X. Zeng, Y. Kang, W. Zhao, X. Li, S. Yuan,
R. Qiu et al., “Scalable high yield exfoliation for monolayer nanosheets,” Nat.
Commun. 14, 236 (2023).

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021306 (2024); doi: 10.1063/5.0189061 11, 021306-36

VC Author(s) 2024

 24 N
ovem

ber 2024 03:57:31

https://doi.org/10.1021/ja409815g
https://doi.org/10.1038/ncomms3890
https://doi.org/10.1021/acs.jpcc.8b06681
https://doi.org/10.1021/acs.jpcc.9b05777
https://doi.org/10.1021/acsnano.5b01184
https://doi.org/10.1038/s41598-021-01425-w
https://doi.org/10.1038/s41598-021-01425-w
https://doi.org/10.1021/acs.nanolett.0c01291
https://doi.org/10.1021/acs.jpclett.0c01769
https://doi.org/10.1021/acs.nanolett.0c04108
https://doi.org/10.1073/pnas.2200019119
https://doi.org/10.1073/pnas.2200019119
https://doi.org/10.1016/j.cej.2022.136817
https://doi.org/10.1016/j.watres.2022.119034
https://doi.org/10.1111/1758-2229.13008
https://doi.org/10.1038/s41467-023-41847-w
https://doi.org/10.1016/j.watres.2021.117665
https://doi.org/10.1088/1478-3975/abdc0e
https://doi.org/10.1021/acs.est.1c06107
https://doi.org/10.1038/s44221-023-00033-4
https://doi.org/10.1016/j.cell.2019.03.029
https://doi.org/10.1038/s41589-020-0623-9
https://doi.org/10.1038/s41579-021-00597-6
https://doi.org/10.1021/acs.est.1c04071
https://doi.org/10.1038/s41564-022-01315-5
https://doi.org/10.1016/j.tim.2023.03.007
https://doi.org/10.1016/j.tim.2022.11.004
https://doi.org/10.1063/5.0015507
https://doi.org/10.1364/JOSAB.446095
https://doi.org/10.1364/JOSAB.446095
https://doi.org/10.1103/PhysRevLett.128.093902
https://doi.org/10.1364/OE.472753
https://doi.org/10.1021/nn205008y
https://doi.org/10.1038/nnano.2012.20
https://doi.org/10.1126/sciadv.adg8292
https://doi.org/10.1088/0266-5611/26/12/125013
https://doi.org/10.1021/acsphotonics.2c00228
https://doi.org/10.1364/OPEX.13.008893
https://doi.org/10.1021/acs.jpcc.0c07979
https://doi.org/10.1021/acs.jpcc.0c07979
https://doi.org/10.1364/OE.386713
https://doi.org/10.1002/solr.201900312
https://doi.org/10.1038/s41467-020-17034-6
https://doi.org/10.1038/s41467-020-17034-6
https://doi.org/10.1016/j.actamat.2021.116694
https://doi.org/10.1016/j.memsci.2007.12.045
https://doi.org/10.1038/s41467-022-35569-8
https://doi.org/10.1038/s41467-022-35569-8
pubs.aip.org/aip/are


373R. Xu, Y. Kang, W. Zhang, B. Pan, and X. Zhang, “Two-dimensional MXene
membranes with biomimetic sub-nanochannels for enhanced cation sieving,”
Nat. Commun. 14, 4907 (2023).

374M. Van Exter and D. Grischkowsky, “Optical and electronic properties of
doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56, 1694–1696 (1990).

375T.-I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,”
Phys. Rev. Lett. 78, 1106 (1997).

376S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of opti-
cal properties of highly doped silicon by terahertz time domain reflection
spectroscopy,” Appl. Phys. Lett. 79, 3923–3925 (2001).

377T. Nagashima and M. Hangyo, “Measurement of complex optical constants of
a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett. 79,
3917–3919 (2001).

378K. Willis, S. Hagness, and I. Knezevic, “Terahertz conductivity of doped sili-
con calculated using the ensemble Monte Carlo/finite-difference time-domain
simulation technique,” Appl. Phys. Lett. 96, 062106 (2010).

379N. Katzenellenbogen and D. Grischkowsky, “Electrical characterization to 4
THz of n-and p-type GaAs using THz time-domain spectroscopy,” Appl.
Phys. Lett. 61, 840–842 (1992).

380P. Huggard, J. Cluff, G. Moore, C. Shaw, S. Andrews, S. Keiding, E. Linfield,
and D. Ritchie, “Drude conductivity of highly doped GaAs at terahertz fre-
quencies,” J. Appl. Phys. 87, 2382–2385 (2000).

381E. Tourni�e, L. Monge Bartolome, M. Rio Calvo, Z. Loghmari, D. A. Díaz-
Thomas, R. Teissier, A. N. Baranov, L. Cerutti, and J.-B. Rodriguez, “Mid-
infrared III–V semiconductor lasers epitaxially grown on Si substrates,” Light:
Sci. Appl. 11, 165 (2022).

382B. Macco and W. Kessels, “Atomic layer deposition of conductive and semi-
conductive oxides,” Appl. Phys. Rev. 9, 041313 (2022).

383A. Bylinkin, F. Calavalle, M. Barra-Burillo, R. V. Kirtaev, E. Nikulina, E.
Modin, E. Janzen, J. H. Edgar, F. Casanova, L. E. Hueso et al., “Dual-band cou-
pling of phonon and surface plasmon polaritons with vibrational and elec-
tronic excitations in molecules,” Nano Lett. 23, 3985–3993 (2023).

384I. Dolado, C. Maciel-Escudero, E. Nikulina, E. Modin, F. Calavalle, S. Chen, A.
Bylinkin, F. J. Alfaro-Mozaz, J. Li, J. H. Edgar, F. Casanova, S. Velex, L. E.
Hueso, R. Esteban, J. Aizpurua, and R. Hillenbrand, “Remote near-field spec-
troscopy of vibrational strong coupling between organic molecules and pho-
nonic nanoresonators,” Nat. Commun. 13, 6850 (2022).

385M. Dapolito, X. Chen, C. Li, M. Tsuneto, S. Zhang, X. Du, M. Liu, and A.
Gozar, “Scattering-type scanning near-field optical microscopy with Akiyama
piezo-probes,” Appl. Phys. Lett. 120, 013104 (2022).

386J. Belhassen, S. Glass, E. Teblum, G. A. Stanciu, D. E. Tranca, Z. Zalevsky, S.
G. Stanciu, and A. Karsenty, “Toward augmenting tip-enhanced nanoscopy
with optically resolved scanning probe tips,” Adv. Photonics Nexus 2, 026002
(2023).

387H. B. Casimir and D. Polder, “The influence of retardation on the London-van
der Waals forces,” Phys. Rev. 73, 360 (1948).

388J. Kondo, “Resistance minimum in dilute magnetic alloys,” Prog. Theor. Phys.
32, 37–49 (1964).

389B. D. Josephson, “The discovery of tunnelling supercurrents,” Rev. Mod. Phys.
46, 251 (1974).

390H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y. Takayama, T.
Miyahara, S. Suzuki, Y. Achiba, M. Nakatake et al., “Direct observation of
Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures,”
Nature 426, 540–544 (2003).

391M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W.
Ketterle, “Vortices and superfluidity in a strongly interacting Fermi gas,”
Nature 435, 1047–1051 (2005).

392H. U. Yang, E. Hebestreit, E. E. Josberger, and M. B. Raschke, “A cryogenic
scattering-type scanning near-field optical microscope,” Rev. Sci. Instrum. 84,
023701 (2013).

393D. Lang, J. D€oring, T. N€orenberg, �A. Butykai, I. K�ezsm�arki, H. Schneider, S.
Winnerl, M. Helm, S. C. Kehr, and L. M. Eng, “Infrared nanoscopy down to
liquid helium temperatures,” Rev. Sci. Instrum. 89, 033702 (2018).

394A. McLeod, E. Van Heumen, J. Ramirez, S. Wang, T. Saerbeck, S. Guenon, M.
Goldflam, L. Anderegg, P. Kelly, A. Mueller, M. K. Liu, I. K. Schuller, and D.
N. Basov, “Nanotextured phase coexistence in the correlated insulator V2O3,”
Nat. Phys. 13, 80–86 (2017).

395G. Ni, A. McLeod, Z. Sun, L. Wang, L. Xiong, K. Post, S. Sunku, B.-Y. Jiang, J.
Hone, C. R. Dean, M. M. Fogler, and D. N. Basov, “Fundamental limits to gra-
phene plasmonics,” Nature 557, 530–533 (2018).

396W. Luo, M. Boselli, J.-M. Poumirol, I. Ardizzone, J. Teyssier, D. van Der
Marel, S. Gariglio, J.-M. Triscone, and A. B. Kuzmenko, “High sensitivity
variable-temperature infrared nanoscopy of conducting oxide interfaces,” Nat.
Commun. 10, 2774 (2019).

397S. Taraskin, S. Simdyankin, S. Elliott, J. Neilson, and T. Lo, “Universal features
of terahertz absorption in disordered materials,” Phys. Rev. Lett. 97, 055504
(2006).

398D. Cortie, M. Cyster, T. Ablott, C. Richardson, J. Smith, G. Iles, X. Wang, D.
Mitchell, R. Mole, N. de Souza et al., “Boson peak in ultrathin alumina layers
investigated with neutron spectroscopy,” Phys. Rev. Res. 2, 023320 (2020).

399T. Mori, Y. Jiang, Y. Fujii, S. Kitani, H. Mizuno, A. Koreeda, L. Motoji, H.
Tokoro, K. Shiraki, Y. Yamamoto, and S. Kojima, “Detection of boson peak
and fractal dynamics of disordered systems using terahertz spectroscopy,”
Phys. Rev. E 102, 022502 (2020).

400M. Tømterud, S. D. Eder, C. B€uchner, M. Heyde, H.-J. Freund, I. Simonsen, J.
R. Manson, and B. Holst, “Observation of the boson peak in a two-
dimensional material,” Nat. Phys. 19, 1910–1915 (2023).

401A. Zaccone, Theory of Disordered Solids: From Atomistic Dynamics to Mechanical,
Vibrational, and Thermal Properties (Springer Nature, 2023), Vol. 1015.

402M. Baggioli and A. Zaccone, “Universal origin of boson peak vibrational
anomalies in ordered crystals and in amorphous materials,” Phys. Rev. Lett.
122, 145501 (2019).

403C. Jiang, M. Baggioli, and J. F. Douglas, “A quantitative theoretical model of
the boson peak based on stringlet excitations,” arXiv:2307.12839 (2023).

404Y.-C. Hu and H. Tanaka, “Origin of the boson peak in amorphous solids,”
Nat. Phys. 18, 669–677 (2022).

405R. Kim, J.-M. Park, S. Haeuser, L. Luo, and J. Wang, “A sub-2 Kelvin cryo-
genic magneto-terahertz scattering-type scanning near-field optical micro-
scope (cm-THz-sSNOM),” Rev. Sci. Instrum. 94, 043702 (2023).

406M. Dapolito, M. Tsuneto, W. Zheng, L. Wehmeier, S. Xu, X. Chen, J. Sun, Z.
Du, Y. Shao, R. Jing et al., “Infrared nano-imaging of Dirac magnetoexcitons
in graphene,” Nat. Nanotechnol. 18, 1409–1415 (2023).

407K. Von Klitzing, “The quantized Hall effect,” Rev. Mod. Phys. 58, 519 (1986).
408D. C. Tsui, “Nobel lecture: Interplay of disorder and interaction in two-

dimensional electron gas in intense magnetic fields,” Rev. Mod. Phys. 71, 891
(1999).

409X. L. Wang, “Proposal for a new class of materials: Spin gapless semiconduc-
tors,” Phys. Rev. Lett. 100, 156404 (2008).

410S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hellings,
S. Lazar, F. Swiadek, J. Herrmann et al., “Realizing repeated quantum error cor-
rection in a distance-three surface code,”Nature 605, 669–674 (2022).

411S. Storz, J. Sch€ar, A. Kulikov, P. Magnard, P. Kurpiers, J. L€utolf, T. Walter, A.
Copetudo, K. Reuer, A. Akin et al., “Loophole-free Bell inequality violation
with superconducting circuits,” Nature 617, 265–270 (2023).

412M. B. Johnston and H. J. Joyce, “Polarization anisotropy in nanowires:
Fundamental concepts and progress towards terahertz-band polarization devi-
ces,” Prog. Quantum Electron. 85, 100417 (2022).

413S. K. Lamoreaux, “The Casimir force: Background, experiments, and applica-
tions,” Rep. Prog. Phys. 68, 201 (2004).

414G. Klimchitskaya, U. Mohideen, and V. Mostepanenko, “The Casimir force
between real materials: Experiment and theory,” Rev. Mod. Phys. 81, 1827
(2009).

415B. Wit, G. Gramse, and S. M€ullegger, “Calibrated microwave reflectance in
low-temperature scanning tunneling microscopy,” arXiv:2304.08331 (2023).

416Y. Zhou, A. Waelchli, M. Boselli, I. Crassee, A. Bercher, W. Luo, J. Duan, J.
van Mechelen, D. van der Marel, J. Teyssier et al., “Thermal and electrostatic
tuning of surface phonon-polaritons in LaAlO3/SrTiO3 heterostructures,” Nat.
Commun. 14, 7686 (2023).

417S. Xu, Y. Li, R. A. Vitalone, R. Jing, A. J. Sternbach, S. Zhang, J. Ingham, M.
Delor, J. McIver, M. Yankowitz et al., “Electronic interactions in Dirac fluids
visualized by nano-terahertz spacetime mapping,” arXiv:2311.11502 (2023).

418I. O. Nedoliuk, S. Hu, A. K. Geim, and A. B. Kuzmenko, “Colossal infrared
and terahertz magneto-optical activity in a two-dimensional Dirac material,”
Nat. Nanotechnol. 14, 756–761 (2019).

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021306 (2024); doi: 10.1063/5.0189061 11, 021306-37

VC Author(s) 2024

 24 N
ovem

ber 2024 03:57:31

https://doi.org/10.1038/s41467-023-40742-8
https://doi.org/10.1063/1.103120
https://doi.org/10.1103/PhysRevLett.78.1106
https://doi.org/10.1063/1.1413498
https://doi.org/10.1063/1.1426258
https://doi.org/10.1063/1.3308491
https://doi.org/10.1063/1.107762
https://doi.org/10.1063/1.107762
https://doi.org/10.1063/1.372238
https://doi.org/10.1038/s41377-022-00850-4
https://doi.org/10.1038/s41377-022-00850-4
https://doi.org/10.1063/5.0116732
https://doi.org/10.1021/acs.nanolett.3c00768
https://doi.org/10.1038/s41467-022-34393-4
https://doi.org/10.1063/5.0074804
https://doi.org/10.1117/1.APN.2.2.026002
https://doi.org/10.1103/PhysRev.73.360
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1103/RevModPhys.46.251
https://doi.org/10.1038/nature02074
https://doi.org/10.1038/nature03858
https://doi.org/10.1063/1.4789428
https://doi.org/10.1063/1.5016281
https://doi.org/10.1038/nphys3882
https://doi.org/10.1038/s41586-018-0136-9
https://doi.org/10.1038/s41467-019-10672-5
https://doi.org/10.1038/s41467-019-10672-5
https://doi.org/10.1103/PhysRevLett.97.055504
https://doi.org/10.1103/PhysRevResearch.2.023320
https://doi.org/10.1103/PhysRevE.102.022502
https://doi.org/10.1038/s41567-023-02177-2
https://doi.org/10.1103/PhysRevLett.122.145501
http://arxiv.org/abs/2307.12839
https://doi.org/10.1038/s41567-022-01628-6
https://doi.org/10.1063/5.0130680
https://doi.org/10.1038/s41565-023-01488-y
https://doi.org/10.1103/RevModPhys.58.519
https://doi.org/10.1103/RevModPhys.71.891
https://doi.org/10.1103/PhysRevLett.100.156404
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1038/s41586-023-05885-0
https://doi.org/10.1016/j.pquantelec.2022.100417
https://doi.org/10.1088/0034-4885/68/1/R04
https://doi.org/10.1103/RevModPhys.81.1827
http://arxiv.org/abs/2304.08331
https://doi.org/10.1038/s41467-023-43464-z
https://doi.org/10.1038/s41467-023-43464-z
http://arxiv.org/abs/2311.11502
https://doi.org/10.1038/s41565-019-0489-8
pubs.aip.org/aip/are


419L. Wehmeier, S. Xu, R. A. Mayer, B. Vermilyea, M. Tsuneto, M. Dapolito, R.
Pu, Z. Du, X. Chen, W. Zheng et al., “Nano-imaging of Landau-phonon polar-
itons in Dirac heterostructures,” arXiv:2312.14093 (2023).

420I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, “Image force microscopy
of molecular resonance: A microscope principle,” Appl. Phys. Lett. 97, 073121
(2010).

421Z. Apalla, A. Lallas, E. Sotiriou, E. Lazaridou, and D. Ioannides,
“Epidemiological trends in skin cancer,” Dermatol. Pract. Concept. 7, 1 (2017).

422R. L. Barnhill, J. A. Fine, G. C. Roush, and M. Berwick, “Predicting five-year
outcome for patients with cutaneous melanoma in a population-based study,”
Cancer 78, 427–432 (1996).

423M. Arumi-Uria, N. S. McNutt, and B. Finnerty, “Grading of atypia in nevi:
Correlation with melanoma risk,”Mod. Pathol. 16, 764 (2003).

424X. Chen, H. Lindley-Hatcher, R. I. Stantchev, J. Wang, K. Li, A. Hernandez
Serrano, Z. D. Taylor, E. Castro-Camus, and E. Pickwell-MacPherson,
“Terahertz (THz) biophotonics technology: Instrumentation, techniques, and
biomedical applications,” Chem. Phys. Rev. 3, 011311 (2022).

425F. Wahaia, I. Kasalynas, D. Seliuta, G. Molis, A. Urbanowicz, C. D. C. Silva, F.
Carneiro, G. Valusis, and P. L. Granja, “Study of paraffin-embedded colon
cancer tissue using terahertz spectroscopy,” J. Mol. Struct. 1079, 448–453
(2015).

426Y. C. Sim, J. Y. Park, K.-M. Ahn, C. Park, and J.-H. Son, “Terahertz imaging
of excised oral cancer at frozen temperature,” Biomed. Opt. Express 4, 1413–
1421 (2013).

427S. Yang, L. Ding, S. Wang, C. Du, L. Feng, H. Qiu, C. Zhang, J. Wu, K. Fan, B.
Jin et al., “Studying oral tissue via real-time high-resolution terahertz spectro-
scopic imaging,” Phys. Rev. Appl. 19, 034033 (2023).

428S. J. Oh, S.-H. Kim, Y. B. Ji, K. Jeong, Y. Park, J. Yang, D. W. Park, S. K. Noh,
S.-G. Kang, Y.-M. Huh et al., “Study of freshly excised brain tissues using tera-
hertz imaging,” Biomed. Opt. Express 5, 2837–2842 (2014).

429A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D.
Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast
tumors,” Radiology 239, 533–540 (2006).

430S. Sy, S. Huang, Y.-X. J. Wang, J. Yu, A. T. Ahuja, Y.-T. Zhang, and E.
Pickwell-MacPherson, “Terahertz spectroscopy of liver cirrhosis: Investigating
the origin of contrast,” Phys. Med. Biol. 55, 7587 (2010).

431K. Ross and R. Gordon, “Water in malignant tissue, measured by cell refrac-
tometry and nuclear magnetic resonance,” J. Microsc. 128, 7–21 (1982).

432R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H.
Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carci-
noma,” J. Invest. Dermatol. 120, 72–78 (2003).

433E. Pickwell, B. Cole, A. Fitzgerald, V. Wallace, and M. Pepper, “Simulation of
terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84, 2190–
2192 (2004).

434V. P. Wallace, A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan,
and T. Ha, “Terahertz pulsed spectroscopy of human basal cell carcinoma,”
Appl. Spectrosc. 60, 1127–1133 (2006).

435E. P. J. Parrott, Y. Sun, and E. Pickwell-MacPherson, “Terahertz spectroscopy:
Its future role in medical diagnoses,” J. Mol. Struct. 1006, 66–76 (2011).

436L. Xie, Y. Yao, and Y. Ying, “The application of terahertz spectroscopy to pro-
tein detection: A review,” Appl. Spectrosc. Rev. 49, 448–461 (2014).

437K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O.
Yurchenko, “In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot
study of non-invasive early diagnosis of dysplasia,” Appl. Phys. Lett. 106,
053702 (2015).

438X. G. Peralta, D. Lipscomb, G. J. Wilmink, and I. Echchgadda, “Terahertz
spectroscopy of human skin tissue models with different melanin content,”
Biomed. Opt. Express 10, 2942–2955 (2019).

439A. Kucheryavenko, I. Dolganova, A. Zhokhov, V. Masalov, G. Musina, V.
Tuchin, N. Chernomyrdin, A. Gavdush, D. Il’enkova, S. Garnov, and K.
Zaytsev, “Terahertz-wave scattering in tissues: Examining the limits of the
applicability of effective-medium theory,” Phys. Rev. Appl. 20, 054050 (2023).

440K. Kanevche, D. J. Burr, D. J. N€urnberg, P. K. Hass, A. Elsaesser, and J.
Heberle, “Infrared nanoscopy and tomography of intracellular structures,”
Commun. Biol. 4, 1341 (2021).

441C. Meineke, M. Prager, J. Hayes, Q. Wen, L. Z. Kastner, D. Schuh, K. Fritsch,
O. Pronin, M. Stein, F. Sch€afer et al., “Scalable high-repetition-rate sub-half-

cycle terahertz pulses from spatially indirect interband transitions,” Light: Sci.
Appl. 11, 151 (2022).

442A. Di Gaspare, V. Pistore, E. Riccardi, E. A. Pogna, H. E. Beere, D. A. Ritchie,
L. Li, A. G. Davies, E. H. Linfield, A. C. Ferrari, and M. S. Vitiello, “Self-
induced mode-locking in electrically pumped far-infrared random lasers,”
Adv. Sci. 10, 2206824 (2023).

443S. Mansourzadeh, T. Vogel, A. Omar, M. Shalaby, M. Cinchetti, and C. J.
Saraceno, “Broadband, high power THz source at 540 kHz using organic crys-
tal BNA,” APL Photonics 8, 011301 (2023).

444X. Wu, D. Kong, S. Hao, Y. Zeng, X. Yu, B. Zhang, M. Dai, S. Liu, J. Wang, Z.
Ren et al., “Generation of 13.9-mJ terahertz radiation from lithium niobate
materials,” Adv. Mater. 35, 2208947 (2023).

445Y. Liang, Z. Liu, Q. Tian, T. Li, X. Lin, L. Yan, Y. Du, R. Li, J. Shi, C. Cheng
et al., “Widely tunable electron bunch trains for the generation of high-power
narrowband 1–10 THz radiation,” Nat. Photonics 17, 259–263 (2023).

446X. Zhang, M. Hu, Z. Zhang, Y. Wang, T. Zhang, X. Xu, T. Zhao, Z. Wu, R.
Zhong, D. Liu et al., “High-efficiency threshold-less Cherenkov radiation gen-
eration by a graphene hyperbolic grating in the terahertz band,” Carbon 183,
225–231 (2021).

447J. L. Boland, D. A. Damry, C. Q. Xia, P. Sch€onherr, D. Prabhakaran, L. M.
Herz, T. Hesjedal, and M. B. Johnston, “Narrowband, angle-tunable, helicity-
dependent terahertz emission from nanowires of the topological Dirac semi-
metal Cd3As2,” ACS Photonics 10, 1473–1484 (2023).

448O. Cherkasova, D. Serdyukov, A. Ratushnyak, E. Nemova, E. Kozlov, Y. V.
Shidlovskii, K. Zaytsev, and V. Tuchin, “Effects of terahertz radiation on living
cells: A review,” Opt. Spectrosc. 128, 855–866 (2020).

449Z. Yan, L.-G. Zhu, K. Meng, W. Huang, and Q. Shi, “THz medical imaging:
from in vitro to in vivo,” Trends Biotechnol. 40, 816–830 (2022).

450L. Olivieri, L. Peters, V. Cecconi, A. Cutrona, M. Rowley, J. S. Totero
Gongora, A. Pasquazi, and M. Peccianti, “Terahertz nonlinear ghost imaging
via plane decomposition: Toward near-field micro-volumetry,” ACS
Photonics 10, 1726–1734 (2023).

451A. Pizzuto, X. Chen, H. Hu, Q. Dai, M. Liu, and D. M. Mittleman,
“Anomalous contrast in broadband THz near-field imaging of gold micro-
structures,” Opt. Express 29, 15190–15198 (2021).

452Y. Moon, H. Lee, J. Jung, and H. Han, “Direct visualization of carbon black
aggregates in nitrile butadiene rubber by THz near-field microscope,” Sci.
Rep. 13, 7846 (2023).

453P. Kuba�s�cík, A. Farka�s, K. Olejník, T. Troha, M. H�yvl, F. Krizek, D. C. Joshi,
T. Ostatnick�y, J. Jechumt�al, E. Schmoranzerov�a et al., “Terahertz probing of
anisotropic conductivity and morphology of CuMnAs epitaxial thin films,”
arXiv:2303.15268 (2023).

454K. S. Kumar, G. L. Prajapati, R. Dagar, M. Vagadia, D. S. Rana, and M.
Tonouchi, “Terahertz electrodynamics in transition metal oxides,” Adv. Opt.
Mater. 8, 1900958 (2020).

455M. Kotiuga, Z. Zhang, J. Li, F. Rodolakis, H. Zhou, R. Sutarto, F. He, Q.
Wang, Y. Sun, Y. Wang et al., “Carrier localization in perovskite nickelates
from oxygen vacancies,” Proc. Natl. Acad. Sci. U. S. A. 116, 21992–21997
(2019).

456F. Gunkel, D. V. Christensen, Y. Chen, and N. Pryds, “Oxygen vacancies: The
(in) visible friend of oxide electronics,” Appl. Phys. Lett. 116, 120505 (2020).

457M. Wenskat, J. �Ci�zek, M. O. Liedke, M. Butterling, M. Stiehl, G. D. L.
Semione, C. Backes, C. Bate, O. Melikhova, E. Hirschmann et al., “Vacancy
dynamics in niobium and its native oxides and their potential implications for
quantum computing and superconducting accelerators,” Phys. Rev. B 106,
094516 (2022).

458D. Wang, J.-Q. Xu, H.-J. Zhang, and Q.-H. Wang, “Anisotropic scattering
caused by apical oxygen vacancies in thin films of overdoped high-
temperature cuprate superconductors,” Phys. Rev. Lett. 128, 137001 (2022).

459Y. E. Suyolcu, G. Christiani, P. T. Gemperline, S. R. Provence, A. Bussmann-
Holder, R. B. Comes, P. A. van Aken, and G. Logvenov, “Engineering ordered
arrangements of oxygen vacancies at the surface of superconducting La2CuO4

thin films,” J. Vac. Sci. Technol. 40, 013214 (2022).
460Y. Wang, J. Venezuela, and M. Dargusch, “Biodegradable shape memory

alloys: Progress and prospects,” Biomaterials 279, 121215 (2021).
461J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021306 (2024); doi: 10.1063/5.0189061 11, 021306-38

VC Author(s) 2024

 24 N
ovem

ber 2024 03:57:31

http://arxiv.org/abs/2312.14093
https://doi.org/10.1063/1.3480608
https://doi.org/10.5826/dpc.0702a01
https://doi.org/10.1002/(SICI)1097-0142(19960801)78:3<427::AID-CNCR8>3.0.CO;2-G
https://doi.org/10.1097/01.MP.0000082394.91761.E5
https://doi.org/10.1063/5.0068979
https://doi.org/10.1016/j.molstruc.2014.09.024
https://doi.org/10.1364/BOE.4.001413
https://doi.org/10.1103/PhysRevApplied.19.034033
https://doi.org/10.1364/BOE.5.002837
https://doi.org/10.1148/radiol.2392041315
https://doi.org/10.1088/0031-9155/55/24/013
https://doi.org/10.1111/j.1365-2818.1982.tb00433.x
https://doi.org/10.1046/j.1523-1747.2003.12013.x
https://doi.org/10.1063/1.1688448
https://doi.org/10.1366/000370206778664635
https://doi.org/10.1016/j.molstruc.2011.05.048
https://doi.org/10.1080/05704928.2013.847845
https://doi.org/10.1063/1.4907350
https://doi.org/10.1364/BOE.10.002942
https://doi.org/10.1103/PhysRevApplied.20.054050
https://doi.org/10.1038/s42003-021-02876-7
https://doi.org/10.1038/s41377-022-00824-6
https://doi.org/10.1038/s41377-022-00824-6
https://doi.org/10.1002/advs.202206824
https://doi.org/10.1063/5.0126367
https://doi.org/10.1002/adma.202208947
https://doi.org/10.1038/s41566-022-01131-7
https://doi.org/10.1016/j.carbon.2021.06.091
https://doi.org/10.1021/acsphotonics.3c00068
https://doi.org/10.1134/S0030400X20060041
https://doi.org/10.1016/j.tibtech.2021.12.002
https://doi.org/10.1021/acsphotonics.2c01727
https://doi.org/10.1021/acsphotonics.2c01727
https://doi.org/10.1364/OE.423528
https://doi.org/10.1038/s41598-023-34565-2
https://doi.org/10.1038/s41598-023-34565-2
http://arxiv.org/abs/2303.15268
https://doi.org/10.1002/adom.201900958
https://doi.org/10.1002/adom.201900958
https://doi.org/10.1073/pnas.1910490116
https://doi.org/10.1063/1.5143309
https://doi.org/10.1103/PhysRevB.106.094516
https://doi.org/10.1103/PhysRevLett.128.137001
https://doi.org/10.1116/6.0001473
https://doi.org/10.1016/j.biomaterials.2021.121215
https://doi.org/10.1038/nature08916
pubs.aip.org/aip/are


462A. Gao, Y.-F. Liu, C. Hu, J.-X. Qiu, C. Tzschaschel, B. Ghosh, S.-C. Ho, D.
B�erub�e, R. Chen, H. Sun et al., “Layer Hall effect in a 2D topological axion
antiferromagnet,” Nature 595, 521–525 (2021).

463Y. Wang, L. Yang, X.-L. Shi, X. Shi, L. Chen, M. S. Dargusch, J. Zou, and Z.-G.
Chen, “Flexible thermoelectric materials and generators: Challenges and inno-
vations,” Adv. Mater. 31, 1807916 (2019).

464Y. Wang, M. Hong, W.-D. Liu, X.-L. Shi, S.-D. Xu, Q. Sun, H. Gao, S. Lu, J.
Zou, and Z.-G. Chen, “Bi0.5Sb1.5Te3/PEDOT: PSS-based flexible thermoelec-
tric film and device,” Chem. Eng. J. 397, 125360 (2020).

465E. T. Papaioannou and R. Beigang, “THz spintronic emitters: A review on
achievements and future challenges,” Nanophotonics 10, 1243–1257 (2021).

466Y. Tokura, M. Kawasaki, and N. Nagaosa, “Emergent functions of quantum
materials,” Nat. Phys. 13, 1056–1068 (2017).

467Y. Tokura, K. Yasuda, and A. Tsukazaki, “Magnetic topological insulators,”
Nat. Rev. Phys. 1, 126–143 (2019).

468O. Breunig and Y. Ando, “Opportunities in topological insulator devices,”
Nat. Rev. Phys. 4, 184–193 (2022).

469Y. Wang, M. Hong, J. Venezuela, T. Liu, and M. Dargusch, “Expedient sec-
ondary functions of flexible piezoelectrics for biomedical energy harvesting,”
Bioact. Mater. 22, 291–311 (2023).

470Y. Wang, W.-D. Liu, H. Gao, L.-J. Wang, M. Li, X.-L. Shi, M. Hong, H. Wang,
J. Zou, and Z.-G. Chen, “High porosity in nanostructured n-type Bi2Te3
obtaining ultralow lattice thermal conductivity,” ACS Appl. Mater. Interfaces
11, 31237–31244 (2019).

471Z.-H. Zheng, X.-L. Shi, D.-W. Ao, W.-D. Liu, M. Li, L.-Z. Kou, Y.-X. Chen, F.
Li, M. Wei, G.-X. Liang et al., “Harvesting waste heat with flexible Bi2Te3 ther-
moelectric thin film,” Nat. Sustainability 6, 180–191 (2023).

472Y. Lu, L. L. Hale, A. M. Zaman, S. J. Addamane, I. Brener, O. Mitrofanov, and
R. Degl’Innocenti, “Near-field spectroscopy of individual asymmetric split-
ring terahertz resonators,” ACS Photonics 10, 2832–2838 (2023).

473L. L. Hale, Z. Wang, C. T. Harris, I. Brener, S. Law, and O. Mitrofanov, “Near-
field spectroscopy of Dirac plasmons in Bi2Se3 ribbon arrays,” APL Photonics
8, 051304 (2023).

474K. Lai, W. Kundhikanjana, M. A. Kelly, Z.-X. Shen, J. Shabani, and M.
Shayegan, “Imaging of Coulomb-driven quantum Hall edge states,” Phys. Rev.
Lett. 107, 176809 (2011).

475Y.-T. Cui, B. Wen, E. Y. Ma, G. Diankov, Z. Han, F. Amet, T. Taniguchi, K.
Watanabe, D. Goldhaber-Gordon, C. R. Dean, and Z.-X. Shen,
“Unconventional correlation between quantum Hall transport quantization
and bulk state filling in gated graphene devices,” Phys. Rev. Lett. 117, 186601
(2016).

476B. Cheng, P. L. Kramer, Z.-X. Shen, and M. C. Hoffmann, “Terahertz-driven
local dipolar correlation in a quantum paraelectric,” Phys. Rev. Lett. 130,
126902 (2023).

477Y. Huang, J. D. Querales-Flores, S. W. Teitelbaum, J. Cao, T. Henighan, H.
Liu, M. Jiang, G. De la Pe~na, V. Krapivin, J. Haber et al., “Ultrafast measure-
ments of mode-specific deformation potentials of Bi2Te3 and Bi2Se3,” Phys.
Rev. X 13, 041050 (2023).

478T. Wang, C. Wu, M. Mogi, M. Kawamura, Y. Tokura, Z.-X. Shen, Y.-Z. You,
and M. T. Allen, “Probing the edge states of Chern insulators using microwave
impedance microscopy,” Phys. Rev. B 108, 235432 (2023).

479V. Pistore, L. Viti, C. Schiattarella, Z. Wang, S. Law, O. Mitrofanov, and M. S.
Vitiello, “Holographic nano-imaging of terahertz Dirac plasmon polaritons
topological insulator antenna resonators,” Small (published online 2023).

480V. Pistore, L. Viti, C. Schiattarella, E. Riccardi, C. S. Knox, A. Yagmur, J. J.
Burton, S. Sasaki, A. G. Davies, E. H. Linfield et al., “Terahertz plasmon polar-
itons in large area Bi2Se3 topological insulators,” Adv. Opt. Mater. 12,
2301673 (2023).

481H. Handa, Y. Okamura, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Tokura,
and Y. Takahashi, “Terahertz field driven giant nonlinear phonon response in
ferroelectric semiconductor In-doped (Sn, Pb)Te,” Phys. Rev. B 109, L081102
(2024).

482W.-B. Dai, H. Li, D.-H. Xu, C.-Z. Chen, and X. Xie, “Quantum anomalous
layer Hall effect in the topological magnet MnBi2Te4,” Phys. Rev. B 106,
245425 (2022).

483S. Li, T. Liu, C. Liu, Y. Wang, H.-Z. Lu, and X. C. Xie, “Progress on antiferro-
magnetic topological insulator MnBi2Te4,” Natl. Sci. Rev. 11, nwac296 (2023).

484M. E. Barber, Y. Li, J. Gibson, J. Yu, Z. Jiang, Y. Hu, Z. Ji, N. Nandi, J. C.
Hoke, L. B.-V. Horn et al., “Characterization of two fast-turnaround dry dilu-
tion refrigerators for scanning probe microscopy,” arXiv:2401.04373 (2024).

485L. Luo, X. Yang, X. Liu, Z. Liu, C. Vaswani, D. Cheng, M. Mootz, X. Zhao, Y.
Yao, C.-Z. Wang et al., “Ultrafast manipulation of topologically enhanced sur-
face transport driven by mid-infrared and terahertz pulses in Bi2Se3,” Nat.
Commun. 10, 607 (2019).

486X. Chen, S. Xu, S. Shabani, Y. Zhao, M. Fu, A. J. Millis, M. M. Fogler, A. N.
Pasupathy, M. Liu, and D. N. Basov, “Machine learning for optical scanning
probe nanoscopy,” Adv. Mater. 35, 2109171 (2022).

487Y. Zhao, X. Chen, Z. Yao, M. K. Liu, and M. M. Fogler, “Deep-learning-aided
extraction of optical constants in scanning near-field optical microscopy,”
J. Appl. Phys. 133, 133105 (2023).

488J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks,” in Proceedings of the IEEE
International Conference on Computer Vision (IEEE, 2017), pp. 2223–2232.

489I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” Commun.
ACM 63, 139–144 (2020).

490L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y. Shao, W. Zhang, B.
Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey of methods
and applications,” arXiv:2209.00796 (2022).

491Y. Xu, Z. Liu, M. Tegmark, and T. Jaakkola, “Poisson flow generative models,”
arXiv:2209.11178 (2022).

492D. Chen, Y. Bai, S. Ament, W. Zhao, D. Guevarra, L. Zhou, B. Selman, R. B.
van Dover, J. M. Gregoire, and C. P. Gomes, “Automating crystal-structure
phase mapping by combining deep learning with constraint reasoning,” Nat.
Mach. Intell. 3, 812–822 (2021).

493J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds,
R. Hafner, A. Abdolmaleki, D. de Las Casas, C. Donner, L. Fritz, C. Galperti,
A. Huber, J. Keeling, M. Tsimpoukelli, J. Kay, A. Merle, J.-M. Moret, S. Noury,
F. Pesamosca, D. Pfau, S. Olivier, C. Sommariva, S. Coda, B. Duval, A. Fasoli,
P. Kohli, K. Kavukcuoglu, D. Hassabis, and M. Riedmiller, “Magnetic control
of tokamak plasmas through deep reinforcement learning,” Nature 602, 414–
419 (2022).

494Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar, “Fourier neural operator for parametric partial differential
equations,” in International Conference on Learning Representations (2021).

495J. Yu, L. Lu, X. Meng, and G. E. Karniadakis, “Gradient-enhanced physics-
informed neural networks for forward and inverse PDE problems,” Comput.
Methods Appl. Mech. Eng. 393, 114823 (2022).

496S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli,
“Scientific machine learning through physics–informed neural networks:
Where we are and what’s next,” J. Sci. Comput. 92, 88 (2022).

497K. H. R. Chan, Y. Yu, C. You, H. Qi, J. Wright, and Y. Ma, “Deep networks
from the principle of rate reduction,” arXiv:2010.14765 (2020).

498E. Weinan, “The dawning of a new era in applied mathematics,” Not. Am.
Math. Soc. 68, 565–571 (2021).

499T. G. Grossmann, U. J. Komorowska, J. Latz, and C.-B. Sch€onlieb, “Can
physics-informed neural networks beat the finite element method?,”
arXiv:2302.04107 (2023).

500M. Ko, U. K. Panchal, H. Andrade-Loarca, and A. Mendez-Vazquez,
“CoShNet: A hybird complex valued neural network using shearlets,”
arXiv:2208.06882 (2022).

501T. O’Leary-Roseberry, U. Villa, P. Chen, and O. Ghattas, “Derivative-informed
projected neural networks for high-dimensional parametric maps governed by
PDEs,” Comput. Methods Appl. Mech. Eng. 388, 114199 (2022).

502H. Liu, Z. Dai, D. So, and Q. V. Le, “Pay attention to MLPs,” Adv. Neural Inf.
Process. Syst. 34, 9204–9215 (2021).

503W. Liang, G. A. Tadesse, D. Ho, L. Fei-Fei, M. Zaharia, C. Zhang, and J. Zou,
“Advances, challenges and opportunities in creating data for trustworthy AI,”
Nat. Mach. Intell. 4, 669–677 (2022).

504C. Stokel-Walker and R. Van Noorden, “What ChatGPT and generative AI
mean for science,” Nature 614, 214–216 (2023).

505T. H. Trinh, Y. Wu, Q. V. Le, H. He, and T. Luong, “Solving olympiad geome-
try without human demonstrations,” Nature 625, 476–482 (2024).

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 021306 (2024); doi: 10.1063/5.0189061 11, 021306-39

VC Author(s) 2024

 24 N
ovem

ber 2024 03:57:31

https://doi.org/10.1038/s41586-021-03679-w
https://doi.org/10.1002/adma.201807916
https://doi.org/10.1016/j.cej.2020.125360
https://doi.org/10.1515/nanoph-2020-0563
https://doi.org/10.1038/nphys4274
https://doi.org/10.1038/s42254-018-0011-5
https://doi.org/10.1038/s42254-021-00402-6
https://doi.org/10.1016/j.bioactmat.2022.10.003
https://doi.org/10.1021/acsami.9b12079
https://doi.org/10.1038/s41893-022-01003-6
https://doi.org/10.1021/acsphotonics.3c00527
https://doi.org/10.1063/5.0135867
https://doi.org/10.1103/PhysRevLett.107.176809
https://doi.org/10.1103/PhysRevLett.107.176809
https://doi.org/10.1103/PhysRevLett.117.186601
https://doi.org/10.1103/PhysRevLett.130.126902
https://doi.org/10.1103/PhysRevX.13.041050
https://doi.org/10.1103/PhysRevX.13.041050
https://doi.org/10.1103/PhysRevB.108.235432
https://doi.org/10.1002/smll.202308116
https://doi.org/10.1002/adom.202301673
https://doi.org/10.1103/PhysRevB.109.L081102
https://doi.org/10.1103/PhysRevB.106.245425
https://doi.org/10.1093/nsr/nwac296
http://arxiv.org/abs/2401.04373
https://doi.org/10.1038/s41467-019-08559-6
https://doi.org/10.1038/s41467-019-08559-6
https://doi.org/10.1002/adma.202109171
https://doi.org/10.1063/5.0139517
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
http://arxiv.org/abs/2209.00796
http://arxiv.org/abs/2209.11178
https://doi.org/10.1038/s42256-021-00384-1
https://doi.org/10.1038/s42256-021-00384-1
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1016/j.cma.2022.114823
https://doi.org/10.1016/j.cma.2022.114823
https://doi.org/10.1007/s10915-022-01939-z
http://arxiv.org/abs/2010.14765
https://doi.org/10.1090/noti2259
https://doi.org/10.1090/noti2259
http://arxiv.org/abs/2302.04107
http://arxiv.org/abs/2208.06882
https://doi.org/10.1016/j.cma.2021.114199
https://doi.org/10.48550/arXiv.2105.08050
https://doi.org/10.48550/arXiv.2105.08050
https://doi.org/10.1038/s42256-022-00516-1
https://doi.org/10.1038/d41586-023-00340-6
https://doi.org/10.1038/s41586-023-06747-5
pubs.aip.org/aip/are

